

NOTE: *The Approval Sheet with the original signature must accompany the thesis or
dissertation. No terminal punctuation is to be used.

Graduate Program: Computer Science

Cache and Bandwidth Aware Real-time Subsurface Scattering

Name of Candidate:

Doctor of Philosophy,

Title of Dissertation:

DISSERTATION APPROVAL SHEET

2021

Tiantian Xie

Computer Science and Electrical Engineering

Marc Olano

Dissertation and Abstract Approved:

7/26/2021 | 2:04:33 PM EDT

Associate Professor

CURRICULUM VITAE

Name: Tiantian Xie

Degree and date to be conferred: Ph.D., 2021

Collegiate institutions attended: University of Maryland, Baltimore County,

Ph.D., 2015-2021

Sichuan University, Master’s Degree,

2011-2014

Sichuan University, Bachelor’s Degree,

2007-2011

Major: Computer Science

Professional Publications:

Tiantian Xie, and Marc Olano (2021). Real-time Subsurface Control Vari-

ates: Temporally Stable Adaptive Sampling. Proceedings of the ACM on Computer

Graphics and Interactive Techniques, 4(1), 1-18.

Tiantian Xie, Marc Olano, Brian Karis, and Krzysztof Narkowicz (2020). Real-

time subsurface scattering with single pass variance-guided adaptive importance

sampling. Proceedings of the ACM on Computer Graphics and Interactive Tech-

niques, 3(1), 1-21.

Wei Wang, Tiantian Xie, Xin Liu, Yao Yao, and Ting Zhu (2019). ECT:

Exploiting cross-technology transmission for reducing packet delivery delay in IoT

networks. ACM Transactions on Sensor Networks (TOSN), 15(2), 1-28.

Zicheng Chi, Yao Yao, Tiantian Xie, Xin Liu, Zhichuan Huang, Wei Wang, and

Ting Zhu (2018). EAR: Exploiting uncontrollable ambient RF signals in heteroge-

neous networks for gesture recognition. In Proceedings of the 16th ACM conference

on embedded networked sensor systems (pp. 237-249).

Yao Yao, Yan Li, Xin Liu, Zicheng Chi, Wei Wang, Tiantian Xie, Ting Zhu

(2018). Aegis: An interference-negligible RF sensing shield. In IEEE INFOCOM

2018-IEEE conference on computer communications (pp. 1718-1726). IEEE.

Wei Wang, Tiantian Xie, Xin Liu, and Ting Zhu (2018). ECT: Exploiting

Cross-Technology Concurrent Transmission for Reducing Packet Delivery Delay in

IoT Networks. In IEEE INFOCOM 2018-IEEE Conference on Computer Commu-

nications (pp. 369-377). IEEE.

Zicheng Chi, Zhichuan Huang, Yao Yao, Tiantian Xie, Hongyu Sun, and Ting

Zhu (2017). EMF: Embedding multiple flows of information in existing traffic for

concurrent communication among heterogeneous IoT devices. In IEEE INFOCOM

2017-IEEE conference on computer communications (pp. 1-9). IEEE.

Tiantian Xie, Zhichuan Huang, Zicheng Chi, and Ting Zhu (2017). Minimizing

amortized cost of the on-demand irrigation system in smart farms. In Proceedings

of the 3rd International Workshop on Cyber-Physical Systems for Smart Water

Networks (pp. 43-46).

Zhichuan Huang, Tiantian Xie, Ting Zhu, Jianwu Wang, and Qingquan Zhang

(2016). Application-driven sensing data reconstruction and selection based on cor-

relation mining and dynamic feedback. In 2016 IEEE International Conference on

Big Data (Big Data) (pp. 1322-1327). IEEE.

Zicheng Chi, Yao Yao, Tiantian Xie, Zhichuan Huang, Michael Hammond,

and Ting Zhu (2016). Harmony: Exploiting coarse-grained received signal strength

from IoT devices for human activity recognition. In 2016 IEEE 24th International

Conference on Network Protocols (ICNP) (pp. 1-10). IEEE.

Shengyang Li, Ping Yi, Zhichuan Huang, Tiantian Xie, and Ting Zhu (2016).

Energy scheduling and allocation in electric vehicles energy internet. In 2016 IEEE

Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT)

(pp. 1-5). IEEE.

Professional positions held:

Graduate Assistant, University of Maryland, Baltimore County, MD, 2015-

2021.

Rendering Programmer Intern, Epic Games, NC, 2020.

Rendering Programmer Intern, Epic Games, NC, 2019.

ABSTRACT

Title of dissertation: CACHE AND BANDWIDTH AWARE
REAL-TIME SUBSURFACE SCATTERING

Tiantian Xie, Doctor of Philosophy, 2021

Dissertation directed by: Professor Marc Olano
Department of Computer Science and
Electrical Engineering

Photo-realistic subsurface scattering is a demanding feature in many real-time

applications, especially in next-generation games and virtual productions where the

uncanny valley needs to be addressed for real-time human skin rendering. Most

importantly, it must be addressed in milliseconds or less without visible quality

compromise. These quality and performance demands are prohibitively expensive

when using Monte Carlo sampling for subsurface scattering. Moreover, real-time

rendering is limited by hardware capability and GPU cache architectures. This

dissertation explores novel algorithms for high-quality photo-realistic real-time sub-

surface scattering with cache incoherence and limited bandwidth.

To achieve this, a new generic taxonomy is proposed for heterogeneous real-

time rendering to identify techniques that can improve bandwidth and cache utiliza-

tion. A single pass, variance guided, and generic O(1) real-time adaptive sampling

technique is proposed to minimize bandwidth demands and improve cache utiliza-

tion. This adaptive sampling pass works with different global temporal accumula-

tion techniques (e.g., Temporal Anti-Aliasing and Deep Learning Super Sampling)

to further improve quality. We propose a new technique, adaptive filtered impor-

tance sampling (AFIS), based on our single pass adaptive sampling technique and

filtered importance sampling. A hybrid AFIS and the separable approximation tech-

nique allows the user to balance quality and performance. To deal with instability

during dynamic lighting, a novel use of Control Variates (CV) in the sample domain

instead of shading domain is proposed.

Our algorithm induces as little as one texture overhead to a real-time rendering

engine, and has been battle tested in the Unreal Engine, a commercial game engine.

CACHE AND BANDWIDTH AWARE
REAL-TIME SUBSURFACE SCATTERING

by

Tiantian Xie

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, Baltimore County in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2021

Advisory Committee:
Professor Marc Olano (Chair/Advisor)
Professor Adam W. Bargteil
Professor David Chapman
Dr. David J. Hill
Professor Matthias K. Gobbert

c© Copyright by
Tiantian Xie

2021

Acknowledgments

I owe all my gratitude to all the people who made this dissertation possible

and Epic Games for supporting this research.

First and foremost, I would like to thank my advisor Dr. Marc Olano at every

stage of the dissertation for guiding me to explore challenging and invaluable research

projects. He has always made himself available for either help in mathematical

problems or advice of career development. It is a pleasure to work with and learn

from such an extraordinary person.

I would like to acknowledge the help and support from all my committee

members: Dr. Adam Bargteil, Dr. David Chapman, Dr. David Hill and Dr.

Matthias Gobbert, and other faculty and staff members at UMBC.

I would also like to thank the rendering team at Epic Games for the intern-

ship opportunity to implement the subsurface scattering pass, which makes this

dissertation possible. I owe special thanks to Brian Karis, Krzysztof Narkowicz,

Patrick Kelly, Peter Sumanaseni, John Hable, Mike Seymour etc. for the career

development, support and inspiration.

All my colleagues at VANGOGH lab have enriched my graduate life in many

ways and deserve a special mention and many thanks including: Ari Rapkin Blenkhorn,

Alex Dahl, Qingyuan Zheng, and Yuping Zhang.

In addition, I would like to acknowledge the love and help from my family

members: my mom, Birong Zhao, my dad, Zhiqiang Xie, and my cat, YiBu.

To all my friends who have spent time with me and show support to me, I will

ii

always appreciate it.

It’s not possible to remember all. I apologize to those who I have unintention-

ally left out!

Last but not least, thank you all!

iii

Table of Contents

List of Tables viii

List of Figures ix

List of Abbreviations xi

1 Introduction 1
1.1 Thesis Statement . 3
1.2 Cache and Bandwidth Aware . 3
1.3 Heterogeneous Real-time Rendering 4
1.4 Adaptive Sampling . 5
1.5 Subsurface Scattering . 7
1.6 Outline . 8

2 Related Work and Background 9
2.1 Monte Carlo Integration . 9

2.1.1 Variance Reduction . 10
2.1.1.1 Importance Sampling 10
2.1.1.2 Low-discrepancy Sequence 12
2.1.1.3 Stratified Sampling 13
2.1.1.4 Control Variates . 14
2.1.1.5 Temporal Reuse . 17

2.1.2 Adaptive Sampling . 18
2.1.2.1 Theory . 19
2.1.2.2 Bias . 21
2.1.2.3 Metrics . 23
2.1.2.4 Adaptive Rendering 25

2.2 Subsurface Scattering . 26
2.2.1 Real-time Model . 27

2.2.1.1 Dipole Profile . 29
2.2.1.2 Burley’s Profile . 30

2.2.2 Real-time Acceleration Techniques 32

iv

2.2.2.1 Guassian Blur . 32
2.2.2.2 Pre-integration . 34
2.2.2.3 Separable Approximation 36

3 Heterogeneous Real-time Rendering 39
3.1 GPU Cache . 40

3.1.1 Simplified GPU Data Cache Architecture 41
3.1.2 Cache Miss Type . 43
3.1.3 Source of Incoherence . 44

3.2 Framework . 45
3.2.1 Heterogeneous Computing Demands 47
3.2.2 Heterogeneous Sample Demands 48
3.2.3 Heterogeneous Memory Demands 49

3.3 Formulation . 51
3.4 Summary . 54

4 Real-time Adaptive Sampling 55
4.1 Introduction . 56
4.2 Basic Metrics . 57
4.3 Temporal Anti-aliasing . 59
4.4 Metrics within Temporal Accumulation 60

4.4.1 Circle Scenario . 62
4.4.2 Disocclusion . 63

4.5 Local Guiding Integration . 65
4.5.1 Global TAA . 66
4.5.2 Deep Learning Super Sampling (DLSS) 69

4.6 Discussion and Limitations . 70

5 Subsurface Scattering 72
5.1 Efficient Sample Generation . 74

5.1.1 Sampling Function . 74
5.1.2 Sampling Sequence . 78

5.2 Adaptive Filtered Importance Sampling 79
5.3 Advanced Design . 82

5.3.1 Unification of Scattering . 82
5.3.2 Importance-Guided Acceleration 86

5.4 Summary . 91

6 Real-time Control Variates 93
6.1 Introduction . 94
6.2 Motivating Example . 97
6.3 Control Variates . 98
6.4 Theory . 100

6.4.1 In-frame Standard Control Variable 101
6.4.2 In-frame Constant Control Variable 102

v

6.5 Online Solution . 104
6.5.1 Online Covariance . 106
6.5.2 Exponential Moving Covariance (EMC) 106
6.5.3 Exponential Moving Covariance Matrix (EMCM) 107
6.5.4 Coefficient Boundary . 108
6.5.5 Online Joint Estimation Algorithm 109

6.6 Offline CV Coefficient Estimation . 112
6.7 Static Lighting . 113
6.8 Discussion and Limitation . 115

7 Implementation and Results 116
7.1 Implementation . 116
7.2 Static Scene . 117

7.2.1 Quality Comparisons . 118
7.2.2 Adaptive Sampling Quality 119
7.2.3 Equal Quality Comparison . 122
7.2.4 Real-time Counterpart Comparison 122
7.2.5 Performance Breakdown . 123
7.2.6 Effect of Sample Budget on Time and Quality 124

7.3 Control Variates on Static Scene . 125
7.4 Dynamic Scene . 127
7.5 Cache Analysis . 131

7.5.1 GPGPU-Sim . 131
7.5.2 Adaptive vs. Fixed Sampling Simulation 132

8 Conclusion 135
8.1 Future Works . 137
8.2 Contributions . 139

A Separable Approximation to Burley’s Model 142
A.1 Fitting . 142
A.2 Validation . 145

B Control Variates 147
B.1 Exponential moving covariance . 147

B.1.1 Variable-weight covariance . 147
B.1.2 Exponential moving covariance 150
B.1.3 EWMA covariance estimator 151

B.2 Covariance of Two Batch Means . 151
B.3 CV Coefficient and Residual Function Selection 152

B.3.1 Scenario Setup . 152
B.3.2 Result . 154

B.4 Theoretical Foundation . 156
B.4.1 Updating Function . 156

B.4.1.1 Time-invariant Scenario 157

vi

B.4.1.2 Time-variant Scenario 158
B.4.2 CV Coefficient, Mean and Variance of CV Residual 159

B.4.2.1 Stable Lighting . 160
B.4.2.2 Dynamic Lighting 160

B.4.3 In-frame Constant Control Variable 161
B.4.3.1 Stable Lighting . 161
B.4.3.2 Dynamic Lighting 162

B.5 More Static Lighting Insights . 163
B.6 Additional Images . 163

C Common Material Parameters for Burley’s Normalized Profile 166

vii

List of Tables

5.1 The realization of different subsurface scattering models. 84

6.1 Selected Symbols . 104

7.1 Adaptive vs fixed phase breakdown for Digital Mike in Fig. 5.1 (ms). 123
7.2 The pass time (ms) and PSNR for rendering the scattering pass under

different sample configurations . 124
7.3 The mean metrics across all frames and the max performance ratio for

adaptive sampling (AS), adaptive sampling with Online CV coefficient

(+OCV), and with constant CV coefficient (+CCV). 127

B.1 The ReMSE of five configurations and the groud truth ResGT 154

C.1 The measured parameters and the corresponding diffuse mean free
path ℓd when g = 0. 166

viii

List of Figures

1.1 MetaHuman rendered with our algorithm in real-time 1
1.2 Subsurface scattering in real and digital world. 2

3.1 Simplified GPU data cache architecture for Turing and RDNA 41
3.2 Comparison between (a) homogeneous and (b) heterogeneous real-

time rendering . 45
3.3 Cache and bandwidth aware real-time rendering algorithm taxonomy 46

4.1 Adaptive sampling visualization . 56
4.2 Sample count estimation . 63
4.3 Sample count estimation considering disocclusion 64
4.4 The local guiding framework for real-time adaptive sampling 66
4.5 Per-frame local variance guided Screen-space Subsurface Scattering

(SSS) sampling to reach a target final rendering quality 67
4.6 Quality of different global temporal accumulation methods (TAA and

DLSS 2.0) under two different intensities 69

5.1 Subsurface rendering comparison from close to far at 1920× 1080 on
NVIDIA Quadro P400 . 73

5.2 Approximation error for cdf −1(ξ) . 75
5.3 Analytic inverse vs. our approximation 76
5.4 Infinite head (c©Lee Perry-Smith) rendered with (a) MIS and (b) our

approximation . 77
5.5 Online sampling sequence generation 78
5.6 Subsurface scattering with sampling resolution. 83
5.7 Direct/diffuse region (black) and direct+distant (white) (b,c) for scene

(a) . 86
5.8 Subsurface pass overview . 87
5.9 Design overview of the new subsurface scattering pass to support

importance-guided acceleration . 88

6.1 Dynamic subsurface scene requires temporally stable adaptive sampling. 94

ix

6.2 Temporal instability leads to sample count over-estimation with real-
time adaptive sampling. 97

6.3 Illustration of our novel application of CV 102
6.4 Real-time adaptive sampling with control variates 109
6.5 Sample count mt estimation with online and offline CV coefficients

a∗t estimation. 113
6.6 Online Control Variates on Static Scene in real-time rendering engine 114

7.1 Subsurface ground truth comparison (without transmission) 116
7.2 Varying PSNR and κ for the Buddha scene with bmax = 64 spp 120
7.3 Varying PSNR and κ for the close skin patch with bmax = 64 spp . . . 121
7.4 Quality comparison of high scattering marble material. Observable

vertical banding artifacts in (a) Separable. 121
7.5 Equal time comparison: fixed vs. adaptive. 123
7.6 Adaptive sampling history and quality analysis for teaser in Fig. 7.7

with static lighting. 125
7.7 CV Coefficient and sample count for Teaser in a static scene. Dy-

namic lighting and fire transparency are disabled for subsurface scat-
tering quality comparison. 127

7.8 Real-time CV performance and quality test at resolution 2560x1440
for the three test scenes . 128

7.9 The cycle level performance for (a) the sampling pass under (b) fixed
and adaptive sampling schema . 131

7.10 Total L1 and L2 cache read demand for near field rendering 133
7.11 L1 and L2 cache read miss rate (%) for near field rendering 134

A.1 Diffuse profile fitting result with three different methods. 143
A.2 The fitting from falloff color to Albedo (A) and DMFP (ℓ) with S∆. . 144
A.3 Fitting details in matlab. 144
A.4 Diffuse profile fitting for the default Separable configuration in UE4. . 145
A.5 Subsurface test for the beam light scene 146

B.1 The CV coefficient and variance under different configuration with 16
samples per frame time. 154

B.2 The CV coefficient and variance with time independent in-frame con-
stant control variable. 163

B.3 More static lighting temporal insight with Control Variates 164
B.4 Additional qualitative comparison between without subsurface scat-

tering, Separable and Ours. 165

x

List of Abbreviations

ATAA Adaptive temporal anti-aliasing
AFIS Adaptive filtered importance sampling
BRDF Bidirectional reflectance distribution function
BSSRDF Bidirectional scattering-subsurface reflection distribution function
CCV Constant Control Variates
CDF Cumulative density function
DLSS Deep Learning Super Sampling
ECDF Empirical cumulative distribution function
EMA Exponential moving average
EMV Exponential moving variance
FPS Frames per second
FXAA Fast approximate anti-aliasing
GPGPU General-purpose GPU
GPU Graphics Processing Unit
IS Importance sampling
LDS Local data share
LTE Light transport equation
LUT Look-up table
MC Monte Carlo
MIS Multiple importance sampling
MSE Mean square error
OCV Online Control Variates
PDF Probability density function
PBR Physically-based rendering
PCSS Percentage-closer soft shadow
PSNR peak signal-to-noise ratio
RMS Root mean square
SDF Signed Distance Function
SIMD Single instruction, multiple data
SM Streaming multiprocessor
SVD Singular value decomposition
SVGF Spatiotemporal variance-guided filter
TAA Temporal anti-aliasing
UE4 Unreal Engine 4
VR Virtual Reality
VRS Variable Rate Shading

xi

Chapter 1: Introduction

Figure 1.1: MetaHuman rendered with our proposed subsurface scattering algorithm
in Unreal Engine in real time.

When light shines onto a surface, it bounces into the surface and bounces out

some where else to create a soft look. This effect is called subsurface scattering.

There are astonishing and enjoyable subsurface scattering effects in the real world

for objects like candles, fruit, and jade (Fig. 1.2). But what we care most about

in real-time rendering, especially in games, is photorealistic human skin rendering

(shown in Fig. 1.1 and Fig. 1.2), without running into the uncanny valley, where

artificial characters become horrible when they look close but not too close to human.

1

Scott Feldstein CC BY 2.0

Paul Harrison CC BY 2.0

Mike Beauregard CC BY 2.0

Digital Mike

Figure 1.2: Subsurface scattering in real and digital world.

However, photo-realistic rendering requires an expensive numerical method, Monte-

Carlo sampling, to simulate the photon accumulation in the real world, where a

large number of random photons are averaged for each pixel. We long for such a

technique to render those characters with high perceived realism not only in game

trailers, but in high frame rate gameplay. This constraint leaves only milliseconds

or even sub-millisecond time for the whole subsurface scattering pass, no matter

how complex the scattering is. Even an occasionally one-frame performance drop

could ruin the immersive experience.

Going for photo-realistic for subsurface scattering will rely heavily on stochas-

2

tic Monte Carlo sampling, a technique frequently used in offline rendering to create

high quality images with large sample count. It is an even more challenging prob-

lem to do physically-based rendering in real time, since it has high incoherent cache

access due to the cache architecture design, and requires high bandwidth demands

due to the number of Monte Carlo samples within a frame.

What novel techniques can be use to target on high quality photo-realistic real-

time rendering with the contemporary and next-generation hardware? This is the

major research question this dissertation tries to explore to provide novel solutions.

1.1 Thesis Statement

Photo-realistic subsurface scattering based on Monte-Carlo sampling is ex-

pensive in real-time rendering because of incoherent cache accesses in contemporary

GPU cache architecture and the high bandwidth demands within a frame. Math-

ematically sound adaptive sampling acceleration techniques can minimize sample

counts and memory demands. To further reduce the computing demands for scala-

bility, a hybrid combination of adaptive sampling and the separable approximation

can achieve high frame-rate subsurface scattering with high quality.

1.2 Cache and Bandwidth Aware

In Monte Carlo sampling, each sample access might evaluate complex materials

required for rendering. Moreover, the access does not always follow the assumption

of good temporal and spatial coherence that current GPU architectures have. For

3

example, to have a more physically correct subsurface scattering in screen space,

not only do we need to sample the irradiance texture stochastically, which goes

against the current architecture design, but we also need to access utility textures

(e.g., pixel subsurface profile and/or normal) in the same stochastically way to

resolve how different subsurface materials should be blended per pixel. This further

exaggerates the cache incoherence and bandwidth demands. This is not unique

to subsurface scattering. The ray-tracing enabled Turing architecture [NVIDIA,

2018] enables more physically correct rendering at the cost of cache-incoherent scene

context access. The hardware acceleration of intersection reduces geometry accesses

and computing time during intersection tests, but the complexity of materials used

to simulate light and matter interaction prevents real-time rendering with stochastic

sampling. This is a result of incoherent cache demands and limited bandwidth. This

dissertation tries to propose cache and bandwidth aware methods at the algorithm

level to increase performance.

1.3 Heterogeneous Real-time Rendering

There are many rendering techniques to accelerate real-time rendering. How-

ever, there is no such a taxonomy that we can look for to help the design of algo-

rithms to minimize cache and bandwidth demands in algorithm level. Therefore, we

created such a categorization based on homogeneity and heterogeneity of real-time

rendering demands in three categories: i) Computing demands, ii) Sample demands,

and ii) Memory demands. With this taxonomy, we can use mathematical formula to

4

describe the demands and the cost of general algorithms that accelerates real-time

rendering. In a brief summary, we have

1. Computing demands. The computing unit cost can be decomposed into the

number of units, the type of units (e.g., raterizer and raytracing unit), the

acceleration technique type (e.g., Shader levels of detail), and spatial reuse

factors (due to variable/adaptive rate shading).

2. Sample demands. Samples are used to increase the quality. The sample de-

mand can be reduced using methods that are both homogeneous across pixels

(e.g., importance sampling, and temporal accumulation) and heterogeneous

(e.g., adaptive sampling) across pixels.

3. Memory demands. The memory access cost can be reduced through procedu-

ral techniques, compression, mipmaps, virtual textures and geometry level of

details.

Within the taxonomy, we have designed algorithms to make subsurface scat-

tering efficient in real time. Note that this taxonomy is designed from the cache and

bandwidth perspective. Please refer to Chapter 3 for more details.

1.4 Adaptive Sampling

Adaptive sampling is an efficient method to increase the rendering efficiency

— less rendering time (i.e., less sample count) is required given a target variance.

The algorithm is based on a statistical formulation of the relationship of sample

5

count and variance (namely, the variance halves when the sample count doubles). Its

efficiency is brought in by an early termination of several pilot samples to survey the

variance. However, if the pilot sample count is too small, the variance is estimated

inaccurate. When the pilot sample size is too large, we lose the efficiency. We

address this issue for real-time rendering where we use an approximation function

using sample histories, yet this history and the corresponding computing complexity

is O(1). This makes adaptive sampling efficient for real-time rendering.

Our algorithm uses history to improve the efficiency yet does not constrain the

actual implementation of the global temporal accumulation algorithm. We demon-

strate that it works with a variation of the standard Temporal Anti-Aliasing (TAA)

algorithm. Although we do not contribute a new deep learning algorithm for this

global accumulation in computer graphics, we demonstrate that our algorithm also

works with a pre-existing general deep learning technique, Deep Learning Super

Sampling (DLSS) designed for super sampling, as the global temporal accumulation

algorithm.

Since the variance estimation is based on a temporal survey of the context to

estimate spatial variance, the temporal variance could lead to over-estimation. In

this dissertation, control variates are applied to remove as much of temporal vari-

ance to achieve temporally stable adaptive sampling. To achieve online estimation,

we propose to use a simple yet mathematically founded novel technique for online

covariance estimation, exponential moving covariance matrix.

6

1.5 Subsurface Scattering

In order to achieve the full potential of physically-based rendering of subsurface

scattering, we pursue Monte Carlo sampling with our proposed adaptive sampling

technique based on Burley’s normalized diffuse reflectance profile [Christensen and

Burley, 2015]. To make it efficient, several more techniques have been utilized and

extended, including importance sampling, and both stratified sampling and low-

discrepancy sequence.

For importance sampling, we first simplify the radius importance sampling

function for efficient sample generation. Next, we apply filtered importance sampling

[Křivánek and Colbert, 2008] to increase the sample information per sample and

reduce the bandwidth demand. The filtered importance sampling algorithm has

also been fused with our adaptive sampling algorithm as adaptive filtered importance

sampling (AFIS). It further reduces the rendering time as subsurface scattering has

heterogeneous sample demands, which makes the algorithm run in sub-linear time.

Since subsurface scattering can be decomposed into direct scattering (diffuse)

within a pixel, and distant scattering of more than a pixel, we can separate each

region and use stratified sampling to combine the final value. We have applied

stratified sampling in the 2D sampling sequence domain for the decomposition.

Since the direct scattering is assumed to access a flat pixel value, we only monitor

the variance of the distant scattering for adaptive sampling.

Since adaptive sampling is only effective when not all scenes are complex, we

also seek to minimize computing demands by using multiple acceleration techniques

7

for a pass, subsurface scattering. Specifically, we proposed a framework to support

the dynamic switching of techniques between separable subsurface scattering and

our method based on AFIS on the fly. This gives the possibility of high resolu-

tion gaming, where main characters can explore the full physically-based rendering

quality, while others with separable for performance and quality balance.

1.6 Outline

Chapter 2 introduces the background and related work for Monte Carlo inte-

gration and real-time subsurface scattering.

Chapter 3 provides a taxonomy of heterogeneous real-time rendering algo-

rithms in terms of cache and bandwidth demands.

Chapter 4 introduces a real-time adaptive sampling algorithm for Monte Carlo

sampling.

Chapter 5 shows the subsurface scattering framework and other advanced de-

signs.

Chapter 6 introduces an online algorithm based on control variates to perform

temporally stable adaptive sampling.

Chapter 7 provides the details of implementation and results of subsurface

scattering.

Chapter 8 presents conclusions and future research directions.

8

Chapter 2: Related Work and Background

2.1 Monte Carlo Integration

The integration of functions in photo-realistic rendering (e.g., subsurface scat-

tering, ambient occlusion, soft shadow, glossy reflection, etc.) often do not have an

analytic solution. For a given function f(x) to integrate as F =
∫
f(x)dx, we can

use Monte-Carlo integration methods to solve it as

FN = E[f(x)]N =
1

N

N∑

i=1

f(Xi) (2.1)

where random variables Xi are uniformly distributed. As long as the function can

be evaluated at Xi, the integration can be solved. However, the Monte Carlo es-

timator brings in error with a reduction rate of O(
√
n). Namely, it requires four

times as many samples to reduce the error by half. One of the major research prob-

lems in rendering is to minimize the variance with the minimal number of samples,

especially for real-time rendering where the bandwidth and computing power are

limited given a millisecond-level time budget on different hardware platforms. To

make full use of the single instruction, multiple data (SIMD) GPU architecture, it

leads to an even lower equal sample count per shading unit for less capable devices.

9

Therefore, variance reduction techniques with low cost are critically needed, even if

they introduce some acceptable bias.

2.1.1 Variance Reduction

In this section, we review all the variance reduction techniques that our al-

gorithm will utilize to make a stochastic sampling algorithm performant for high

quality real-time rendering.

2.1.1.1 Importance Sampling

One of the most prominent methods in Monte Carlo rendering for variance

reduction is importance sampling (IS), introduced first to graphics in bidirectional

path tracing [Lafortune and Willems, 1993, Veach and Guibas, 1995]. The basic

idea is that the expectation of a function with respect to one distribution can be

approximated by a weighted draw from another distribution [Tokdar and Kass, 2010]

as

Ep[f(x)] =

∫
f(x)p(x)dx (2.2)

=

∫
f(x)

p(x)

q(x)
q(x)dx (2.3)

= Eq

[
f(x)p(x)

q(x)

]
(2.4)

= Eq[f(x)w(x)] (2.5)

10

where w(x) = p(x)
q(x)

and p(x) is a probability density function, q(x) is another prob-

ability density function. Eq[·] denotes that the expectation is with respect to q(x)

where x ∼ q and for f(x)q(x) 6= 0, q(x) > 0. Then, we have the variance for the

correlated sampling of function f and w based on x as

Var(f · w) =E[f 2w2]− E[fw]2 (2.6)

=Cov(f 2, w2) + (Var(f) + E[f]2)(Var(w) + E[w]2) (2.7)

− (Cov(f, w) + E[f]E[w])2. (2.8)

This variance cannot be further reduced as we cannot have the independent assump-

tion between f and w. However, if f(x) = c is known as a constant, we have

Var(f · w) = 0 + c2(Var(w) + E[w]2)− c2E[w]2 (2.9)

= c2Var(w). (2.10)

Under such circumstance, the smaller the variance of w(x) is with respect to q, the

smaller the total variance is, which means the closer q(x) approximates to p(x) over

the domain x, the more efficient the importance sampling technique is.

In rendering, especially real-time rendering, the target density function p(x)

is often known or the CDF is known. For the first case, we can assign q(x) = p(x)

to make full use of IS. If q(x) is too complex to sample in real-time, a lightweight

approximation function q̃(x) can be fitted beforehand. However for the later case,

when an analytic inverse solution might be impossible to derive, a triangle-cut so-

11

lution [Heitz, 2020] to inverse the CDF could be applied, or we can approximate

again.

Another solution would be using multiple importance sampling [Grittmann

et al., 2019] where multiple density functions are employed together to approximate

p(x). However, sometimes there is no analytic density function, like the lighting

distribution function. Those functions can be estimated from the data and described

by a representation of the data, like structured importance sampling [Agarwal et al.,

2003], then we can sample the representation based on a random variable.

In real-time rendering, even when we have the analytic function to describe

q(x). It is not an easy task to be performant as it requires stochastic access of the

data, which leads to a cache incoherence crisis where frequent loading from off-chip

memory is inevitable.

2.1.1.2 Low-discrepancy Sequence

To efficiently generate samples for MC integration, the sampling space needs

to be uniformly sampled. Generally, we have

E[f(x)] =

∫

uuu∈D

f(Q−1(uuu))p(Q−1(uuu))

q(Q−1(uuu))
duuu

︸ ︷︷ ︸
uniform sampling

(2.11)

with the integral warping x = Q−1(uuu), where uuu is in uniform space and D = [0, 1)n.

Q(x) =
∫
x
q(t)dt is the cumulative density function. The PDF q(Q−1(uuu)) is the

12

change-of-variable Jacobian determinant.

To uniformly sample uuu, different low-discrepancy sequences (e.g., Sobol, Hal-

ton, Hammersley, n-Rooks or R2) are preferred rather than a naive random sequence

to minimize the perceived errors in real-time rendering. The discrepancy of a se-

quence [Pharr et al., 2016] can be measured as

DN(B,P) = sup
b∈B,B⊆D

∣∣∣∣
#{uuui ∈ b}

N
− V (b)

∣∣∣∣ (2.12)

where a sequence of N samples uuu1, ...,uuuN are drawn according to a sequence gener-

ator within b, B = {[0, v1]× ...× [0, vi]× ...× [0, vn]} and vi ∈ [0, 1). V(b) measures

the volume of interest. #{·} measures the number of samples.

For real-time rendering pipelines that have some capability of temporal ac-

cumulation, an optimal low-discrepancy sequence would be a low-discrepancy n

dimension sequence which also has low-discrepancy in projected (n− 1) dimension

space for Monte-Carlo integration within a frame. To the best of our knowledge,

it is still an open problem in the literature. In this dissertation, we do not explore

to improve the sampling sequence for real-time rendering. However, we will use

real-time friendly low-discrepancy sequence, R2 sequence for sample generation. To

mitigate the correlation between neighbor pixels, a real-time efficient hash function

[Jarzynski and Olano, 2020] is applied to generate random samples, e.g., based on

the frame number and the pixel coordinate.

13

2.1.1.3 Stratified Sampling

Stratified sampling is another useful technique to reduce variance, where the

domain are subdivided into strata. Each stratum is assured to allocate samples with

different sampling strategies. Then the variance can be minimized for the modified

MC integral

E[f(x)] =
M∑

i=1

∫

uuu∈Di

f(Q−1(uuu))p(Q−1(uuu))

q(Q−1(uuu))
duuu (2.13)

where D = ⊔M
i Di and each Di is a stratum. This strata boundary subdivision is

often constant as a grid in computer graphics [Pharr et al., 2016]. However it can

also be allocated based on some probability density function where Pi =
|Di|
|D|

. | · |

measures the volume. Then, N sample MC estimator is

FN =
M∑

i=1

Pi

[
1

Ni

Ni∑

j=1

f(Q−1(uuuj))p(Q
−1(uuuj))

q(Q−1(uuuj))

]
,uj ∈ Di (2.14)

where Ni = Pi · N . The stratification ensures that important features have high

changes of being sampling overall. In addition, stratification increases sampling

efficiency if some strata integrals are known to be of low frequency where low sample

count (e.g., one sample) yields the exact result. This actually leads to our design

of more efficient real-time adaptive sampling with the unification of scattering in

section 5.3.1.

14

2.1.1.4 Control Variates

The control variates method is a variance reduction technique that decom-

poses a Monte-Carlo integration into the sum of a known integral with some scaling

coefficient and a more easily estimated residual [Ripley, 2009]. It has been studied

and applied in many fields, like finance [Alexader, 1999], operations research [Nel-

son, 1990, Hesterberg and Nelson, 1998], and computer networks [Lavenberg et al.,

1982]. It requires an estimation of the optimal CV coefficient.

For a function to integrate F =
∫
D
f(x)dx, we assume that there is a function

g(x), the control variate function, that the integration of the given domain D is

already known as G. Then the function can be rewritten as

F = a ·G+

∫

D

f(x)− a · g(x)dx (2.15)

where a is a parameter to scale function g(x) so that the signal f(x)− a · g(x) is as

flat as possible. During sampling, f(x) and g(x) are sampled with the same random

number as coupled sampling. In this way, the difference given x will be relatively

small due to the flatness of the signal. The variance will only be introduced by

slopes inside the signal. Then, the CV estimator

〈F 〉 = a ·G+ 〈F − a ·G〉. (2.16)

〈·〉 denotes the MC sampling expectation for simplicity. It should demonstrate low

15

variance as

Var(〈F 〉) =Var(a ·G+ 〈F − a ·G〉) (2.17)

=Var(〈F 〉) + a2Var(〈G〉)− 2aCov(〈F 〉, 〈G〉), (2.18)

where when a = Cov(〈F 〉, 〈G〉)/Var(〈F 〉) (by setting the derivative of Eq. 2.18 to

zero to solve for a), the variance is minimized as

Var(〈F 〉) = (1− Corr(〈F 〉, 〈G〉)2)Var(〈F 〉), (2.19)

where Corr(·) is the correlation coefficient. Therefore, as long as the selected control

variate function g(x) is correlated with f(x), we can achieve variance reduction. If

g(x) approximates to f(x) so close that Corr(〈F 〉, 〈G〉) becomes 1 or -1, the variance

is reduced to zero. Even when the correlation is zero, the measured variance will be

exactly the same as Var(〈F 〉). This characteristics gives us a very good motivation

to use CV when variance is used in an estimation process.

In computer graphics, CV has been explored in offline rendering in many

applications with a pre-defined constant CV coefficient to separate out the main part

(e.g., residual ratio tracking [Novák et al., 2014], and multiple correlated sampling

[Szécsi et al., 2004]). It has also been explored to find the optimal CV coefficient

through penalized least squares [Fan et al., 2006], regressions [Rousselle et al., 2016,

Kondapaneni et al., 2019], and deep learning [Müller et al., 2020]. However, no

existing research provides any guidance or applications for real-time rendering where

16

the time budget per frame is only several milliseconds and we cannot afford those

expensive calculations. Moreover, the goal here is slightly different — to reduce the

monitored variance due to temporal changes instead of to reduce the MC estimator

variance as those prior techniques do in static scenes. The monitored variance

is then used for sample count estimation in real-time adaptive sampling. In this

dissertation, we propose such an online CV coefficient estimation algorithm based

on a novel online covariance matrix formula in the context of adaptive sampling. In

the traditional usage, f − a · g is expected to be a constant. However, this finding

used in graphics does not lead to the optimal result. It is expected to be zero when

temporal information is considered instead. We also provide a constant lightweight

approximation in the spirit of major part separation for easy adoption. For more

details, please refer to Section 6.

2.1.1.5 Temporal Reuse

Real-time rendering demonstrates high spatio-temporal coherence [Scherzer

et al., 2012]. This coherence has been used for temporal anti-aliasing [Karis, 2014]

(TAA) and accumulation with shading or geometry information to amortize cost

and improve the rendering quality. The major problems dealt with in the literature

are blurring, ghosting, lag and flickering [Xiao et al., 2018, Patney et al., 2016,

Iglesias-Guitian et al., 2016] due to the use of exponential moving average that

blends history with the current frame, and heuristics to tell if they are from the

same object.

17

Temporal information has also been integrated with other systems to amortize

sample costs. Recent work replaces the TAA result with ray tracing when ghosting

and blurring are detected based on variance and depth [Marrs et al., 2018]. The

spatio-temporal variance-guided filtering (SVGF) method includes geometry infor-

mation and an image-space wavelet filter to achieve one sample per pixel real-time

path tracing [Schied et al., 2017]. Schied et al. [2018] adaptively change the expo-

nential weights based on temporal gradients to improve the scene temporal stability

(reducing temporal overblurring) caused by fast light changes when using SVGF.

In this work, we guide the stochastic sampling process through temporally-

accumulated variance and effective sample count. This allows us to amortize the

sample count to meet quality requirements and time budget per pixel. We do this

without modifying the existing TAA process or constraining its implementation, pro-

viding more stable and lower variance input to the TAA process, while still relying on

that TAA to combine samples across frames. Unlike existing work [Iglesias-Guitian

et al., 2016] where linear models and inverse covariance matrix are fit through recur-

sive least squares to provide variance information, we use a light-weight algorithm

that needs only one additional texture to be passed between frames.

2.1.2 Adaptive Sampling

Adaptive sampling is a sampling technique to allocate more samples in regions

with high variation [Pharr et al., 2016]. It enables faster convergence than uniform

sampling [Dammertz et al., 2010, Moon et al., 2014]. However, the major drawback

18

is if the pilot samples are also used to estimate the mean, the result would be biased

[Kirk and Arvo, 1991]. This is also the dilemma that prevents the adoption of

adaptive sampling in real-time rendering — most real-time renderers do not want

to waste sample count on unrendered pilot samples. In this section, we review some

adaptive sampling algorithms, the source of bias and several applications of adaptive

sampling.

We are especially interested in those adaptive sampling algorithms potential

for real-time rendering. Namely, the algorithm should not increase the sampling

efficiency at the cost of the overhead of the adaptive sampling algorithm. Of those

algorithms, we find the statistical variance method mathematically sound and effi-

cient for real-time rendering. Therefore, we give a full introduction of the theory

and potential bias. At last, we have a brief introduction to other potential metrics

to indicate future potential research directions.

2.1.2.1 Theory

A statistically optimized adaptive sampling has been proposed in the literature

[Lee et al., 1985]. If we integrate a function f(x) with a weight function p(x) over

the domain D = Rn, the expected value is

Ep[f(x)] =

∫

D

f(x)p(x)dx,

∫

D

p(x)dx = 1. (2.20)

19

When x1, x2, ..., xN are independent identically distributed samples according to

p(x), the Monte Carlo estimator has

FN =
1

N

N∑

i=1

f(xi). (2.21)

With the strong law of large number, limN→∞ FN = E[f(x)] = E[FN], and

Var(FN) = E[(FN − E[f(x)])2] (2.22)

=
E[f 2(x)]− E[f(x)]2

N
(2.23)

=
Var(f(x))

N
. (2.24)

With the increasing number of N , the Monte Carlo variance is reduced. The β

probability that N is large enough to reduce the variance below a given threshold

under the normal theory is

P (
Ns2N

Var(f(x))
< χ2

β(N − 1)) = β, (2.25)

where s2N = 1
N
E[(f(xi) − FN)

2] is the sample variance of the data. Note that the

Chi-Squared has the same form in normal theory as

χ2(k − 1) =
(k − 1) · s2

σ2
, (2.26)

20

and k is the number of degrees of freedom. With respect to the variance of the

Monte Carlo estimator FN , we have

P (Var(FN) <
s2N

χ2
β(N − 1)

) = 1− β. (2.27)

Then the variance threshold can be determined as

Var 0(FN) =
σ2
w

χ2
β(Nmax − 1)

, (2.28)

where σ2
w is the target maximal variance, and Nmax is the maximum number of

samples allowed due to computing budgets. Then, we can get the minimal sample

count N based on the variance threshold.

Reinterpretation of Chi-Square. Under the normal theory assumption of Chi-Squared

in Eq. 2.26, it gives us a new interpretation in the domain of adaptive sampling,

which is the number of samples required to reach the variance σ2 of a normal pop-

ulation, given the k observations with a standard derivation of the data s. Our

proposed real-time adaptive sampling is extended from this reinterpretation in Eq.

4.1.

2.1.2.2 Bias

Adaptive sampling leads to premature stop when the initial samples cannot

observe the high frequency information. This premature stop results in bias. To

illustrate the bias from adaptive sampling statistically, a general form of adaptive

21

sampling algorithm [Kirk and Arvo, 1991] is shown in Algorithm 1. This algorithm

captures most cases in adaptive sampling. In the algorithm, a pilot sample set of

size n is first drawn from a random variable X with a distribution (Line 2). If a

variance metrics Variantion(·) on the sample set Sn is less than a variance threshold

(Line 3), the sampling population will be regarded as easy. The neighboring values

are of low frequency. The sampling result is a mean metric on the sample set (Line

4). Otherwise the population is a hard case where the neighbor values are of high

frequency. Further oracle operations are performed to calculate the true mean (Line

6).

Algorithm 1 General Adaptive Sampling Algorithm

Require: X,n, ǫ

1: // Draw n i.i.d. random pilot samples from X

2: Sn = {x1, x2, ..., xn}
3: if Variation(Sn) < ǫ then

4: µ = S̄n

5: else

6: µ = Oricle(X)

7: end if

8: return µ

Since a pixel in rendering is mostly determined by a finite domain (e.g., the

auxiliary buffers around the target pixel), we can safely assume that the random vari-

able X is a weighted sum of a measure of the auxiliary buffers. Equivalently, it is k

distinct values v1, v2, ..., vk summed with the corresponding probabilities p1, p2, ..., pk.

22

Then the ground truth mean can be denoted as

v =
k∑

i=1

pivi, (2.29)

where the weight is normalized by
∑k

i=1 pi = 1. With respect to algorithm 1, we

can rewrite the expectation based on conditional expectations in accordance to low,

and high frequency as

E[µ] = E[µ|low] · P [low] + E[µ|high] · P [high] (2.30)

where E[µ|high] = v and P (high) = 1 − P (low). Since any sample set Sn can be

created by k-tuple (n1, n2, ..., nk) with
∑k

i=1 ni = n, and the ni samples are of value

vi, the probability of the k-tuple based on multinomial distribution has

P [n1, n2, ..., nk] =
n!

n1!...nk!

k∏

i=1

pi. (2.31)

In the low frequency case, if ǫ is sufficient small, all n samples can be the same

value. It leads to

P [low] =
k∑

i=1

pni (2.32)

E[µ|low] =

∑k
i=1 p

n
i vi

P [low]
(2.33)

23

Then the adaptive sampling result function can be simplified to

E[µ] = v +
k∑

i=1

pni (vi − v) (2.34)

where the right part is the bias. The bias diminishes consistently when n increases.

In order to minimize the bias, the initial pilot sample size n needs to be sufficient

large. For applications, like subpixel anti-aliasing, several pilot samples might be

good enough. But for complicated applications like percentage closer softer shadow,

ambient occlusion, or subsurface scattering, they might require even larger n, which

makes adaptive sampling inappropriate. In this dissertation, we try to tackle this

issue for real-time applications. We keep the pilot size n small and adaptive, yet

the algorithm unbiased with temporal reuse of sample count statistics, because our

adaptive sampling process determines the sample count instead of the shading result

for each frame (Section 4).

2.1.2.3 Metrics

This section presents the adaptive sampling variance metrics. Zwicker et al.

[2015] reviews the lastest adaptive sampling and reconstruction algorithms in a

systematic way by dividing the metrics type into two categories ‘a priori’ and ‘a

posteriori’.

‘A priori’ Metrics. ‘a priori’ metrics rely on a local analysis of the light trans-

portation equation. For example, it can be described by local geometry, BRDF

models, depth [Soler et al., 2009], and local light field. After estimation, they can

24

often be directly used to determine the number of samples. More specifically, 1) we

can perform frequency analysis in Fourier domain [Durand et al., 2005], then when

the frequency information is combined with a single sample, it is able to determine

the local sampling density based on Nyquist’s sampling theorem and local bandlim-

its. The same idea also extends to the wavelet domain. Bagher et al. [2012] extract

a bandwidth buffer to estimate sampling rate, but, at the cost of at least 16 spp

before actual sampling. This spectrum can also be described through a covariance

matrix for high dimension space [Belcour et al., 2013, 2014]. 2) Derivative analy-

sis (e.g., 1st and 2nd order derivatives) can also be performed with the basic idea

that the higher the gradient the more complex the surface is, the more samples are

required. Ramamoorthi et al. [2007] uses the magnitude of first-order gradient to

perform hierarchical sampling of uniform grids. The higher the gradient, the more

samples are drawn for the next level.

’A Posteriori’ Metrics. These methods rely on actual Monte-Carlo sampling

of the light transportation equations to statistically determine if more samples are

still needed for a pixel or region. Common features include: contrast [Mitchell,

1987], perceptual metrics [Bolin and Meyer, 1998], variance through MSE, mutual

information, and chi-square. To determine the metric, spatial information is used.

For example, MSE requires accessing neighbor pixels to estimate the variance. Bolin

and Meyer [1998] proposed a hierarchical adaptive sampling technique in wavelet

space. It iteratively places a sample at the location with largest perceptual error

globally after a traversal of a quad tree that stores intermediate errors.

Some other algorithms make use of both ‘a priori’ and ‘a posteriori’ metrics.

25

For example, for inhomogeneous single-scattering media, Ren et al. [2008] used

gradient based interpolation to reconstruct the source radiance inside the volume

with a small set of samples. However, there exist sharp shading regions where denser

sampling is required. To perform adaptive sampling, they proposed an error matric

based on the product of the numerical gradient of radiance values at six surrounding

point along the basis direction, and the actual radiance difference between neighbor

sampled radiance within a valid sphere. Then, an recursive version of algorithm 1

(where the Oracle function is replaced by the function itself and new samples are

concatenated to Sn) is performed until a given number of recursion is reached.

2.1.2.4 Adaptive Rendering

Most recent applications of adaptive sampling are for adaptive rendering. They

adjusts sampling density and filtering to improve rendering efficiency. Sparse linear

models and optimal sampling windows are recursively updated to best reconstruct

neighboring pixels [Moon et al., 2015]. An error estimator guides sampling to high

variance regions. Adaptive sampling algorithms often require significant memory

and computing power to solve an optimization function, e.g., in the gradient domain

[Manzi et al., 2016] for path tracing. Typically, two passes are required [Moon et al.,

2014]. In the first phase, a small number of uniform samples are allocated to gather

the error. In the second pass, additional samples are allocated based on error metrics

in the first pass. An extended version of the adaptive sampling is iterative adaptive

sampling which continues sampling until a certain variation criteria is met. We

26

seek innovations to use only one pass. We propose a single pass adaptive sampling

model that only needs to store one additional texture across frames and with little

calculation overhead. The proposed one pass model is able to pick up dynamic

light and motion changes and adjust samples effectively. Recently, researchers at

NVIDIA applied neural networks (U-Net) as adaptive sampling metrics on feature

buffers (e.g., normals, depth and albedo at first hit) and the projected rendering in

the previous frame to estimate sample count maps in a single pass as well [Hasselgren

et al., 2020, Hofmann et al., 2021]. However, it’s too expensive and not suitable for

this adaptive sampling task.

2.2 Subsurface Scattering

In this section, we first review the research literature for physically-based sub-

surface scattering for real-time rendering. Then, we introduce some background for

different models and real-time acceleration techniques.

Early physically-based rendering algorithms for subsurface scattering used

Monte Carlo path tracing to solve the radiative transfer equation. Even with

the introduction of Bidirectional Scattering-Surface Reflection Distribution Func-

tion (BSSRDF) [Nicodemus et al., 1977] to simplify subsurface integration onto

surface domain, these algorithms took hours to generate an image on hardware of

the day. Jensen introduced a BSSRDF light diffusion model with the dipole [Jensen

et al., 2001] and multi-dipole [Donner and Jensen, 2005] approximations. The sim-

pler dipole method only considers isotropic subsurface scattering in highly scattering

27

media, but introduced the diffuse reflectance profile, which allowed compact repre-

sentation and efficient evaluation.

Two different directions that reduce the complexity for real-time rendering

when using diffuse profiles are online sampling and pre-integration. Online sampling

is designed with an assumption that subsurface scattering can be approximated by a

weighted sum of artist-friendly kernels [Borshukov and Lewis, 2005] or dipole-based

Gaussian kernels [d’Eon et al., 2007]. The sample count is further reduced by shifting

from texture space [dEon and Luebke, 2007] per subsurface object to screen space

[Jimenez et al., 2009, 2015] after deferred rendering. In contrast, pre-integration

methods offload online sampling based on the dipole approximation into texture

look-ups based on the assumptions that subsurface scattering is visible when there

is light gradient change [Penner and Borshukov, 2011] and the distance to shadow

can be correctly reconstructed.

Recent advances in physically-based subsurface rendering fit an approxima-

tion to Monte-Carlo results instead of fitting the dipole model, which is already an

approximation [Christensen and Burley, 2015]. This technique has been recently

incorporated into the Unity game engine with pre-calculated sampling [Golubev,

2018].

28

2.2.1 Real-time Model

At a surface point p, the outgoing radiance for direction ωo is

Lo(p, ωo) =

∫

∂Ω

∫

S2

Li(q, ωi)S(q, wi, p, wo)dωidq, (q ∈ ∂Ω), (2.35)

where Li is the incoming radiance at point q from the direction ωi. ωi integrates

over all incoming directions of the hemisphere S2. q integrates over the local surface

patch ∂Ω. S is the bidirectional scattering-surface reflectance distribution function

(BSSRDF). S depicts the ratio of reflected radiance at p for direction ωo given an

incoming flux from direction ωi at q:

S(q, wi, p, wo) =
dLo(p, ωo)

dΦi(q, ωi)
[m−2 · sr−1]. (2.36)

Eq. 2.36 is often simplified by assuming a radially symmetric S in a homogeneous

semi-infinite planar medium as

S(q, wi, p, wo) = CFt(q, ωi)R(rq)Ft(p, ωo), (2.37)

where rq = ||p − q||, Ft(·) is the directional fresnel transmission term, R(·) is the

diffuse reflectance profile and C is a constant term. Then, for a given flux reflec-

tion direction ω at p, the simplified subsurface scattering function with symmetric

diffusing profile at the surface point p becomes

29

Lo(p, ω) =

∫

∂Ω

R(rq) · b(p, q, ω) · dq (2.38)

b(p, q, ω) =

∫

S2

CFt(p, ω)Ft(q, ωi)Li(q, ωi)〈ωi, nq〉dωi, (2.39)

To use this formula, e.g., in deferred rendering, the internal integration can

be pre-calculated into irradiance textures for all lights as b. The outer one can be

implemented as a post-processing pass. In the real-time rendering literature, there

are two branches of work as to how diffuse reflectance profile can be modeled.

2.2.1.1 Dipole Profile

Most work [Jensen et al., 2001, Donner and Jensen, 2005, d’Eon and Irving,

2011, Habel et al., 2013] since Grosjean [1959] decomposes light (or neutrons) into

reduced-intensity, single-scattering, and multi-scattering terms as

S = S(0) + S(1) + Sd (2.40)

based on a Neumann series and handles them separately. The reduced intensity

transmission S(0) is the direct radiance without scattering, and can be implemented

by standard transparency algorithm based on the Lambert-Beer Law. S(1) is an

integration of all single scattering events in the media [Jensen et al., 2001]. The

multi-scattering term Sd models all the remaining scattering events and is simplified

with dipole diffusion approximation. The corresponding diffuse reflectance profile

30

Rd based on classic dipole is

Rd(r) =
α′zr(1 + σtrdr)e

−σtrdr

4πd3r
− α′zv(1 + σtrdv)e

−σtrdv

4πd3v
(2.41)

where α′ = σs
′

σt
′ is the reduced albedo. σs

′ and σt
′ are the reduced scattering co-

efficients and reduced extinction coefficient with σt
′ = σa + σs

′. σa is the absorp-

tion coefficient. σtr =
√
3σaσt′ is the effective transport coefficient. zr = 1

σt
′ and

zv = 1+4(1+Fdr)/(3(1−Fdr)))
σ+t′

are the positive and negtive source positions with a refer-

ence to z = 0. dr and dv are the corresponding distance to the sources from point q

with d =
√
r2 + z2. Fdr is the diffuse Fresnel reflectance that can be approximated

by polynomial expansions [Egan et al., 1973] as

Fdr ≈





−0.4399 + 0.7099
η

− 0.3319
η2

+ 0.0636
η3

, η < 1

−1.4399
η2

+ 0.7099
η

+ 0.6681 + 0.0636
η3

, η > 1

(2.42)

where η is the ratio of index of refraction.

Although more accurate dipole models are available (e.g., multipole) in the

literature of computer graphics, we do not cover deeper details for the scope of

real-time rendering and our major focus is on Burley’s profile.

2.2.1.2 Burley’s Profile

Instead of approximating scattering events separately, Christensen and Burley

[2015] directly approximate the diffuse reflectance profile R(·) based on empirical

31

MC simulation data including all scattering terms. R(·) can be well approximated

by a sum of two exponential functions in terms of distance r as

R(r) = A
e−r/d + e−r/(3d)

8πdr
, (2.43)

where A is the surface albedo with A =
∫∞

0
R(r)2πrdr [Jensen and Buhler, 2005] to

make the profile normalized as Burley’s Normalized Profile. The d term is fit to a

free path length parameter ℓ based on the configuration Θ,

d =





ℓ /(1.85− A+ 7|A− 0.8|3) Θ = Θ1

ℓ /(1.9− A+ 3.5(A− 0.8)2) Θ = Θ2

ℓ /(3.5 + 100(A− 0.33)4) Θ = Θ3

(2.44)

where we have:

1. Search light configuration (Θ = Θ1). Light enters the volume perpendicular

to the surface. ℓ is the volume mean free path.

2. Diffuse surface transmission (Θ = Θ2). ℓ is the volume mean free path for a

rough material after ideal diffuse transmission.

3. Diffuse mean free path as parameter (Θ = Θ3). ℓ is the diffuse mean free path

on the surface, which is denoted as ℓd.

We choose Θ3 as being more artist friendly for typical game uses. With this

choice, we are able to convert fitted material parameters from real world [Jensen

32

et al., 2001] to Burley’s model with the following formulas [Christensen and Burley,

2015]:

ℓd =
1

σtr
(2.45)

σtr =

√
σa
D

(2.46)

D =
σt + σa
3σ2

t

(2.47)

where D is the diffusion coefficient. σt = σa + σs is the extinction coefficient and

σs is the scattering coefficient. σ′
s = σs(1− g) is reduced scattering coefficient that

is affected by g, the mean cosine of the scattering angle. g parameterizes how light

is forward (g > 0) or backward (g < 0) scattered. When g = 0 light is scattered

uniformly at each scattering event. A computed result for diffuse mean free path

for common materials [Jensen et al., 2001] is provided in Table C.1 when g = 0.

Materials from the table will be used in this dissertation.

2.2.2 Real-time Acceleration Techniques

In order to make subsurface scattering run efficiently on GPU and to be

more photo-realistic, subsurface scattering has shifted to texture space and then

to screenspace. There are several acceleration techniques proposed in the litera-

ture, of which Gaussian blur, pre-integration and separable are largely adopted in

real-time rendering engines. In this dissertation, we propose another technique that

accelerates subsurface with higher rendering quality based on our novel adaptive

33

sampling technique as adaptive filtered importance sampling. It can also be used

for other rendering tasks.

2.2.2.1 Guassian Blur

Real-time realistic subsurface scattering is first explored by Borshukov and

Lewis [2005] for human face rendering for the movie ‘The Matrix Reloaded’. Instead

of expensive techniques, like path tracing or volumetric scattering simulation, they

use an artist-friendly kernel to blur the gathered irradiance texture to approximate

subsurface scattering for human face rendering for the movie ‘The Matrix Reloaded’.

The work by d’Eon and his colleagues in the NVIDIA human head demo [d’Eon

et al., 2007] brings the realistic part of dipole diffusion profile, and the real-time

part of using Gaussian filters to approximate dipole, together into texture space.

They created the first realistic and real-time subsurface scattering for human skins

that matched an offline renderer.

A diffusion profile is approximated by a sum of zero-mean isotropic Gaussian

as

Rd(r) ≈ Ag(r) =
k∑

i=1

wiG(vi, r), (2.48)

we need to minimize the error function [d’Eon et al., 2007]

V (v1, ..., vk|Rd) =

∫ ∞

0

r(Rd(r)−
k∑

i=1

wiG(vi, r))
2dr, (2.49)

34

where Ag(r) is the Gaussian approximation, the isotropic Gaussian has G(v, r) =

1
2πv
e−

r2

2v . k is the number of Gaussian. wi is a normalization weight with
∑k

i wi =

∫∞

0
2πrRd(r)dr. With Levenberg-Marquardt optimization to minimize Eq. 2.49, a

relative RMS power error (defined as

√
V (v1,...,vk|Rd)√∫∞
0 r(R(r))2dr

) reports an error of 1.25% for

green wavelength of marble material [Jensen et al., 2001] when k = 4, and an error

of 0.093% when k = 8. For a different diffusion profile, a separate set of Gaussians

needs to be fitted.

The authors also found a closed formula that can fit to dipole more easily

without worrying about convergence when k = 4. Because dipole models are a

sum of two or more pole functions and the variances. The variance v are almost

consistent. For more detail, please refer to the original paper.

Since symmetric 2D Gaussians can be decomposed into two 1D convolutions,

vertically and horizontally. It makes the GPU implementation efficient. Moreover,

if we have multiple radial profiles, they can be combined into new Gaussians one by

one before integration as

k1∑

i=1

wiG(vi, r) ∗
k2∑

j=1

w′
iG(v

′
i, r) =

k1∑

i=1

k2∑

j=1

wiw
′
j

[
G(vi, r) ∗G(v′j, r)

]
. (2.50)

2.2.2.2 Pre-integration

Since subsurface scattering is most visible where lighting changes, [Penner and

Borshukov, 2011] moves in another direction to accelerate real-time subsurface scat-

tering for skin, by offloading online Gaussian sampling into pre-integrated textures

35

(BRDF for lighting, and penumbrae for shadowing). During shading, it is sufficient

to perform texture lookups based on curvature and shadow parameters.

Smooth surface. Subsurface scattering is most observable in a gradient change

region. A fast approximation is to use normal and shadow penumbrae. The pre-

integrated 2D texture T (1
r
, N · L) for different curvature can be fit with

D(θ, r) =

∫ π

−π
max(0, cos(θ + x)) ·R(2r sin(x/2))dx∫ π

−π
R(2 sin(x/2))dx

, (2.51)

where r is the radius and the plane curvature κ = 1
r
. θ is the angle offset from the

normal N . R is the Diffusion profile as a sum of Gaussians. This model assumes

that the material is on a smooth sphere.

Small details. However, small details are often present, like small wrinkles

and pores on skin that are often represented with a detail normal map on a smooth

mesh. To approximate a correct result for those regions, the normal can be pre-

filtered with the diffusion profile for each channel (R, G, B). Since four normal

maps are bandwidth-demanding in real-time rendering, only red normal is created

while the other two as blendings between the specular normal and the clamped

blurry red normal.

Shadows. For shadow regions, the pre-integrated 2D texture based on penum-

bra T (1
w
, s) can be fit by

PS(s, w) =

∫∞

−∞
P ′(P−1(s) + x) ·R(x/w)dx∫∞

−∞
R(x/w)dx

, (2.52)

36

where P (·) is the shadow penumbra, a 1D falloff function that determines how light

transitions from full light to dark. It maps the penumbra width (distance to full

light) to the original shadow value s in world space. P−1(·) is the inverse function to

query the penumbra width. P ′(·) is a new shifted shadow penumbra function that

allows full subsurface scattering integration before falloff due to shadowing. This

shift leaves a segment of penumbra that the subsurface scattering can be saved in

the pre-integrated 2D texture.

2.2.2.3 Separable Approximation

Low rank approximation. Instead of separating out individual Gaussians from

the Gaussian approximation of the diffusion profile (e.g., a sum of 4 Gaussians), and

applying blur one by one [d’Eon et al., 2007], Jimenez et al. [2015] proposed to use

low-Rank approximation of the discrete version of the whole profile with Singular

Value Decomposition (SVD) as

As =UΣV
T , (2.53)

U =(u(1)|u(2)|...|u(m)), (2.54)

V =(v(1)|v(2)|...|v(m)), (2.55)

Σ =diag(σ1, σ2, ..., σm), (2.56)

where Ad ∈ Rm×m is the discrete version in Cartesian Coordinates of the continuous

profile R (or Ag(r) as a convenient real-time approximation) in polar Coordinates.

37

u(i) and v(i) are the ith column of the matrix. σ is in descending order. Then the

r-rank approximation based on the Eckart-Young theorem [Eckart and Young, 1936,

Stewart, 1993] is to keep the first r largest singular values while replacing others by

zero as

A{r}
s =UΣ{r}V T , (2.57)

Σ{r} =diag(σ1, ..., σr, 0, ..., 0). (2.58)

To increase the cache coherence in real-time rendering by using 1D filters, the dis-

crete profile A
{r}
d is further decomposed into separable models ai with

A{r}
s =

r∑

i=1

√
σiu

(i) ⊗√
σiv

(i) =
r∑

i=1

ai ⊗ ai (2.59)

where ⊗ is the outer product. Since the profile R is radially symmetric, we have

u(i) = v(i). It makes the 1D filter function ai =
√
σiu

(i). Then the 2D r-rank filter

can be applied to an irradiance texture with r separable horizontal and vertical

filters. In the ith pass, both horizontal and vertical have the same weight ai.

Pre-integrated models. However, if the irradiance is known to be additively

separable b(x, y) = b(x) + b(y) with ∂b

∂x∂y
= ∂b

∂y∂x
= 0, a ‘rank-1 approximation’

pre-integrated separable kernel is

Ap(x, y) =
1

||R||1
ap(x)ap(y), (2.60)

38

which can be derived in the Cartesian Coordinates for Eq. 2.38 from

Lo(x, y) =

∫
R(x− x′, y − y′)b(x− x′, y − y′)dx′dy′, (2.61)

=

∫
ap(x− x′)b(x− x′)dx′ +

∫
ap(y − y′)b(y − y′)dy′, (2.62)

=

∫ ∫
1

||R||1
a(x− x′)a(y − y′)b(x− x′, y − y′)dx′dy′, (2.63)

=

∫ ∫
Ap(x− x′, y − y′)b(x− x′, y − y′)dx′dy′, (2.64)

ap(x) =

∫
R(x, y)dy, (2.65)

ap(y) =

∫
R(x, y)dx, (2.66)

||R||1 =
∫
a(x)dx =

∫
a(y)dy. (2.67)

With this assumption, we can achieve accurate results when the shadow is either

vertical or horizontal. However, this formulation is not artist-friendly as mentioned

in the original paper [Jimenez et al., 2015] because R = Rd, the diffusion profile,

which is often Gaussian approximations of a dipole model measured that is fixed

at approximation time. But, in real-time rendering applications, the pre-integrated

separable model implementation1 is widely adopted where the result is interpolated

between the center pixel and the pre-integration. Since we have an alternative model

R as diffuse reflectance profile in Burley’s normalized profile, it makes the control

artist-friendly when we select the diffuse mean free path parameterization Θ3, which

enables us to create a hybrid of this separable model with our proposed algorithm

for better quality and performance (See Section 5.3.2).

1separable-sss, Git Repository, https://github.com/iryoku/separable-sss

39

Chapter 3: Heterogeneous Real-time Rendering

All truths are easy to understand once they are

discovered.

—Galileo Galilei

Photo-realistic rendering relies heavily on stochastic sampling to achieve per-

ceived realism. However, it is a great challenge to do physically-based rendering in

real-time since it has high incoherent cache demands. Each interaction causes the

sampling of complex materials required for rendering. Moreover, the access does not

always follow the assumption of high temporal and spatial coherence that the current

GPU architectures have. For example, to have more physically correct subsurface

scattering in screen space, we need to sample the irradiance texture stochastically,

counter to the current GPU architecture design. Meanwhile, we need to access util-

ity textures (e.g., pixel subsurface profile and/or normal) in the same stochastic way

to resolve how different subsurface appearances should be blended per pixel, which

further exaggerates the cache incoherence and bandwidth demands.

What novel and scalable techniques can we use to target high-quality real-time

rendering with contemporary and next-generation hardware? This research question

drives us to explore and to provide novel solutions in this dissertation. We strive to

develop cache and bandwidth aware algorithms to achieve the best rendering quality

40

under a given tight bandwidth and cache budget. However, there is no taxonomy

that we can refer to in the literature to help the design of our algorithms and

show the significance to potential readers clearly. With this motivation, we develop

such a taxonomy. We review the basic GPU cache architecture and its bandwidth,

the source of incoherence in photo-realistic real-time rendering. We then create a

taxonomy of techniques in real-time rendering and present our work within that

framework.

3.1 GPU Cache

In current GPU architecture design, there is an assumption of temporal and

spatial coherence. 1) Spatial coherence indicates that the next address visited has

a high probability of being in the cache lines already filled. For example, array

elements have high spatial coherence if they are accessed in succession. 2) Tempo-

ral coherence indicates recently visited context has a high chance of being revisited

again. For example, the variable to hold the sum of data has high temporal coher-

ence. Any algorithm implementation that follows those two assumptions helps to

increase the cache hit rate and reduce the traffic to caches with lower bandwidth,

thus, improving the performance.

Based on this design assumption, different efficient memory architectures are

proposed by NVIDIA, AMD, Intel, etc. Although not all GPU architecture infor-

mation is publicly available online, we find two similar GPU cache architectures

between NVIDIA Turing and AMD RDNA [Jia et al., 2019, NVIDIA, 2018, AMD,

41

2019].

3.1.1 Simplified GPU Data Cache Architecture

There are basically four types of data cache in a contemporary GPU (e.g.,

Volta V100, Turing T4 GPU, and RX 5700 XT) [Jia et al., 2019, NVIDIA, 2018,

AMD, 2019]. The publicly available bandwidth is also presented as a performance

reference for each type in Fig. 3.1.

CUA CUA CUA…

L1 L1 L1

L2

Global Memory

…

r rr r r rr r r rr r
Turing V4 RX 5700 XT

— 8.88 TiB/s

4.07 TiB/s 3.55 TiB/s

1.18 TiB/s 1.77 TiB/s

298 GiB/s 417 GiB/s

Figure 3.1: Simplified GPU data cache architecture for Turing and RDNA. It also
shows a coarse bandwidth between different cache levels for Turing V4 [Jia et al.,
2019] and RX 5700 XT [AMD, 2019]. The computing unit array (CUA) stands for
streaming multiprocessors (SM) for Turing, and for dual computing unit array for
RDNA.

• L0/Registers. For each of the four processing block in a streaming multipro-

cessor, there is 64KiB of fast access registers [Jia et al., 2019]. For each dual

computing unit, there are four SIMDs that operate independently. The known

caches include vector and scalar registers, local data share (LDS), two 16KiB

L0 vectors, and one 16KiB L0 scalar caches. They have the highest band-

width. The RDNA whitepaper presents an L0 cache bandwidth of 8.88TiB/s

for RX 5700 XT.

42

• L1/shared data cache. L1 data cache and shared memories are combined in

Turing and Volta architecture to reduce hit latency and improve the band-

width. It is shared between multiple threads in SM. However, it is incoherent

between different SM to maximize the throughput. The hit latency is 32 clock

cycles on Turing T4 GPU with a load throughput of 4.07TiB/s . For RDNA

architecture, an L1 cache is first introduced for each array of dual computing

units with the size of 128KiB . L1 bandwidth is 3.55TiB/s for RX 5700 XT.

• L2 data cache. The L2 data cache is unified and coherent within GPU (instruc-

tion and constant memory are the same for Turing Architecture). On Turing

T4 GPU, it has a latency of about 188 clock cycles and a load throughput of

1.18GiB/s . On RX 5700 XT, the bandwidth is 1.77TiB/s .

• Global Memory. A large chunk of memory unique to a GPU. Although data

fetched from global memory are automatically cached in L1 and L2, the

GDDR6 memory creates a hard limit of 298GiB/s theoretical bandwidth on

Turing T4 GPU. RX 5700 XT reports a bandwidth of 417GiB/s .

AMD has recently released AMD Infinity Cache, L3 Caches, on RX 6800

[AMD, 2020], which reduces the bandwidth demands to the global memory. Even

if all data can be cached in L3, the cache incoherence still exists between different

cache levels due to the demanding access from all computing units. When a ren-

dering task is limited by bandwidth, the corresponding cache and bandwidth aware

rendering algorithm is designed so that the data resides in lower cache levels and

the bandwidth demands are reduced as much as possible from higher cache levels.

43

This is generally achievable in most current algorithms, as the data can be efficiently

stored in different registers, like LDS, in L0. However, there are increasing demands

of high native resolutions in the gaming industry (e.g., from 1K to 4K), and some

algorithms (e.g., based on stochastic sampling) have intrinsic high bandwidth de-

mands to higher cache levels. The current bandwidth cannot fully satisfy the needs

and creates a lot of cache misses.

3.1.2 Cache Miss Type

On CPU, caches are designed to reduce latencies. The source of cache misses

can be summarized as a well-known model, 3C model [Hill and Smith, 1989]: 1)

Compulsory. It is the cold start that causes cache misses due to accessing a data

block for the first time. From architecture design, it can be reduced by increasing

block size but at the risks of increasing cache miss rate; 2) Capacity. The cache

is not large enough to contain all data blocks. It can be resolved by increasing

cache size but at the risk of increasing access time, or by reusing the loaded data

more frequently, e.g., by preprocessing discrete data into sequential data blocks;

3) Conflict. Multiple memory addresses are mapped to the same cache location

due to limited associative or replacement policy [Nugteren et al., 2014]. It can

be mitigated by increasing cache size, increasing associativity, or improving the

replacement policy but at the risk of increasing the access time.

GPUs are also designed with 3C model considered. However, instead of reduc-

ing latencies, GPUs are designed to hide the high latency through multi-threading,

44

using the on-chip memory to reduce the bandwidth-limited off-chip traffic [Nugteren

et al., 2014]. Making full use of on-chip memory is essential to exploit the full poten-

tial of the parallel capability of GPU. However, this architecture design is not always

helpful for photo-realistic real-time rendering with per-pixel Monte Carlo sampling

that accesses arbitrary rendering resources of different types and sizes without a

compromise of biased sampling. This hiding mechanism will still be limited by the

bandwidth bottleneck.

3.1.3 Source of Incoherence

The core of current photo-realistic rendering, especially for offline rendering,

is stochastic sampling, which intrinsically does not follow this architecture design.

The incoherence comes from Monte Carlo sampling, large data elements, and ray

and path tracing.

• Photorealistic rendering requires many samples per pixel with Monte Carlo

sampling based on some cumulative density function. It makes each access of

the content intrinsically incoherent. It becomes a performance hazard when

the context accessed cannot be efficiently placed on-chip. One solution is to

utilize a prebuilt mipmap of target textures (e.g., pre-filtered environmental

map [Křivánek and Colbert, 2008]) to increase the cache hit rate.

• However, when the scene material has complex fine details, each interaction

must access and evaluate a large chunk of data that might not be able to go

through the mipmap chain, at the risk of increasing the cache misses, especially

45

16 bit

Memory:

16 spp

3x3 cores 6 cores: Memory access/sample

16 bit

Memory:
16 bit 8 bit

(a) Homogeneous real-time rendering (b) Heterogeneous real-time rendering

16 spp 4 spp 8 spp

16 spp

Figure 3.2: Comparison between (a) homogeneous and (b) heterogeneous real-time
rendering. Heterogeneous real-time rendering can dynamically reduce the sampling,
shading units, and memory demands without noticeable quality degradation.

for SIMD architecture. This data might include not only geometry information

but material and utility buffer or texture overheads.

• Moreover, ray tracing recently introduced in real-time rendering fires several

rays per pixel, and each can bounce into any direction several times incoher-

ently into a complex scene.

3.2 Framework

There are different architecture and algorithm-level methods to deal with this

memory incoherence. In this dissertation, we mainly focus on algorithm-level meth-

ods. Specifically, we proposed a new concept to classify the algorithms and guide our

algorithm design: heterogeneous real-time rendering instead of the existing homo-

geneous real-time rendering. In the literature of real-time rendering, the rendering

process is usually assumed to be homogeneous, where a fixed number of samples are

gathered/scattered into a single or several fixed numbers of outputs. The off-chip

46

traffic is a critical issue if the computation has to have a homogeneous use and

shading of the resource. However, to achieve the same quality in physically-based

rendering, not every output needs the same number of resource samples. Heteroge-

neous sampling is enough. Moreover, adjacent results might be so similar that less

computation is sufficient (e.g., Variable Rate Shading). This observation creates

new opportunities and new challenges for real-time rendering research by exploring

the observed heterogeneity. Fig. 3.2 shows an example of the difference between

homogeneous and heterogeneous real-time rendering from the computing, sampling,

and memory demands. Note that our discussion excludes research that deals with

bandwidth between CPU and GPU and focuses on internal bandwidth within GPU.

Fig. 3.3 shows an overview of the taxonomy and our novelty within this framework

for subsurface scattering.

3.2.1 Heterogeneous Computing Demands

For homogeneous rendering, all computing/shading units are of the same type

and uniformly used for a task. A good example to improve the rendering efficiency

is dynamic resolution, where the resolution and the corresponding required num-

ber of units are scaled uniformly in width and height. This has been adopted in

many real-time rendering engines (e.g., Unreal Engine [Engine, 2020] and Unity3D

[Unity, 2019]) and games when a constant frame time is the optimization goal.

Other techniques, including tiled rendering [Fuchs et al., 1989, Ribble, 2008], and

checkerboard [Wihlidal, 2017], also reduce stalling due to limited bandwidth, com-

47

Computing Demands Sample Demands Memory Demands
Homogeneous

Heterogeneous

C
a

c
h

e
 a

n
d

 B
a

n
d

w
id

th
 A

w
a

re

R
e

a
l-

ti
m

e
 R

e
n

d
e

ri
n

g

Dynamic Resolution

(e.g., TAAU, DLSS)

Tiled Rendering

Checkerboard

Importance Sampling

Stratified Sampling

Denoising (e.g., DLSS)

Temporal Reuse

(e.g., TAA, DLSS)

Ray Marching

Pseudo-random

&Low Discrepancy Seq.

Pre-configured Samples

Sphere Tracing

Binary Search

(e.g., Relief mapping)

Data/Texture Compression

(e.g., SH)

Procedural Texture

(e.g., Perlin noise)

Local Data Share

Locality

(e.g., Morton code)

Mipmaps

Rendering Unit Type

(e.g., Hybrid Rasterizer)

Acceleration Technique Type

(e.g., Shader LoDs)

Spatial Shading Reuse

(e.g., VRS)

Subsurface

Scattering

Acceleration Technique Type

• AFIS

• Separable

• Real-time Adaptive Sampling (sample demands)

• Real-time Control Variates (demands stability)

• Adaptive Filtered Importance Sampling (+ memory demands)

Filtering

Adaptive Sampling

Geometry Level of Details

(e.g., Sparse Voxel Octree)

Muti-pass

Virtual texture

Figure 3.3: Cache and bandwidth aware real-time rendering algorithm taxonomy
based on heterogeneity and the contribution of our real-time rendering technique
for subsurface scattering in the taxonomy. It classifies algorithms to minimize the
rendering computing demands, sample demands, and memory demands.

48

puting power, and caches by reducing the number of computing units at the same

frame time. The fundamental data-parallel operations in most GPGPU are gather

and scatter/splatting that are limited by bandwidth. To mitigate the performance

degradation due to the low locality of random access, He et al. [2007] use multi-pass

to increase locality utilization by processing each chunk of data in a close region at

a time. It helps to increase the cache utility for algorithms like radix sort, hashed

search, and sparse matrix multiplication.

Different categories of shading units could be used or combined (e.g., compute

and/or ray tracing, software and/or hardware) to exploit heterogeneity to improve

the efficiency further. For example, the rasterization of millions of tiny triangles

could be more efficient with a software-based rasterizer than the hardware coun-

terpart optimal for large triangles. The combination leads to better performance

[Battaglia, 2020]. The ray-tracing result can correct shading bias from rasterizer

units [Marrs et al., 2018]. Moreover, the computing demands can be reduced by dif-

ferent real-time acceleration technique types like shader levels of detail [Olano et al.,

2003]. Different acceleration algorithms are called for different computing units un-

der different conditions. In this dissertation, we contribute another in this category,

real-time acceleration for subsurface scattering. In section 5.3.2, subsurface scatter-

ing can be accelerated in the same frame with either the separable approximation

or our proposed algorithm adaptive filtered importance sampling. The type can be

pre-determined or by custom process on the fly.

Furthermore, spatial shading reuse has gained popularity recently. A unit can

be configured to create multiple outputs to reduce the bandwidth and computing

49

demands further when the output is predicted to be low frequency with high proba-

bility. Examples include software and hardware adaptive/variable rate shading [He

et al., 2014, NVIDIA, 2018, Drobot, 2020] and the hierarchical subdivision strat-

egy [Mallett and Yuksel, 2018]. For rendering where eye tracking is possible, or in

Virtual Reality (VR), non-linear transformation can be used (e.g., kernel foveated

rendering [Meng et al., 2018]) to redistribute the computing unit density.

3.2.2 Heterogeneous Sample Demands

For homogeneous rendering, all sample counts are fixed inside each computing

unit for a given algorithm. Different techniques have been exploited in real-time

rendering to improve the quality (or reduce the variance) given a fixed number of

samples. For example, there are importance sampling, stratified sampling, pseudo-

random and low discrepancy sequence, denoising, separable and low-rank approxi-

mation, filtering, and temporal reuse (e.g., TAA [Karis, 2014] and DLSS [Liu, 2020]).

Usually, some subsets of these techniques are combined differently for different im-

plementations. In real-time rendering, even some bias is acceptable if the variance

can be minimized. For example, the ray-marching algorithm places each sample

uniformly for uniform volume tracing. It converges to zero variance but with bias

[Novák et al., 2014]. SVGF [Schied et al., 2017] applies spatial and temporal filtering

to denoise the one sample per pixel (spp) noisy path tracing result.

One widely adopted method for heterogeneity to improve efficiency is to have

different sample count configurations per pass or material. Then it can be configured

50

by users or developers for quality and performance balance. Researchers have tried

to pursue heterogeneity with numerical search acceleration techniques like sphere

tracing [Bastos and Celes, 2008], binary search in relief mapping [Policarpo et al.,

2005], and adaptive sampling techniques in real-time rendering. For example, signed

distance field (SDF) tracing uses an SDF to determine the next ray intersection

point, which requires fewer intersection evaluations than uniform ray marching.

Adaptive sampling tries to determine the sample count per computing unit with

variance metrics based on local gradients and/or neighboring regions [Boksansky

et al., 2019]. Those methods run efficiently if the variance is locally bounded (e.g.,

anti-aliasing). However, accessing those regions could increase the memory demands

per pixel when it requires more regions. Moreover, it reduces the variance at the

stake of correlating neighbor pixels.

3.2.3 Heterogeneous Memory Demands

For homogeneous rendering, each memory request accesses the same sized texel

or buffer. Data are preferred to be cached to reduce the number of stalls due to

limited bandwidth in registers, local data share, or cache levels with high locality

access pattern (e.g., Morton code [Lauterbach et al., 2009, Nocentino and Rhodes,

2010], and ray sorting [Meister et al., 2020, Keller et al., 2019]). Different formats

compress or decompress (either software or hardware based) on the fly so that the

number of bytes transferred is minimized. In practice, the diffuse irradiance can

be characterized by the first nine spherical harmonics coefficients [Ramamoorthi

51

and Hanrahan, 2001] or the cone representation [Zeng et al., 2021] initially used

to model ambient occlusion for cone tracing [Crassin et al., 2011]. An alternative

method to reduce the bandwidth is using procedural techniques where each access

can be directly evaluated on the fly at the cost of increasing computing demands

(e.g., Perlin noise [Perlin, 1985]). Frequently, those techniques are combined together

to balance bandwidth and computing power. Moreover, the access pattern (Morton

code) can also reduce the bandwidth demand.

When large physically measured textures cannot be avoided, and the output

surface is large (e.g., 4K resolutions), Mipmaps [Williams, 1983] can be used, where

if most data access can be redirected to the high level of detail data, smaller memory

demands can be stored in, e.g., registers or GPU caches. They require an accurate

way to determine the level of detail. Mipmap level of detail is based on local deriva-

tives for texture sampling. For more complex usage, like importance sampling,

sampling density can be used. Virtual texture [Mittring and GmbH, 2008] brings in

the virtual memory idea to support even larger textures. Different geometry levels

of detail can also be used to reduce the bandwidth demands of a scene, including

adaptive signed distance field [Frisken et al., 2000], sparse voxel octree [Kämpe et al.,

2013], GVDB [Hoetzlein, 2016], and SSVDAGs [Villanueva et al., 2016].

3.3 Formulation

We propose a descriptive bandwidth demand algorithm for the cache and band-

width aware real-time rendering. For computing demands, we model the total band-

52

width demand for a given rendering task as

T (n) = kT ′
k(n/k) +O(n), (3.1)

T ′(n) =
n∑

i=1

∑

a∈A,r∈R

wi,a,rSi,a,r +O(n), (3.2)

where n is the final number of rendering pixels, k is the number of passes, A de-

notes the technique sets, R denotes the rendering unit type, S denotes the sample

demands, and w is the compute demanding weight. Eq. 3.1 is the sum of the band-

width demand of k passes, plus some additional per-pixel bandwidth. Eq. 3.2 is

the sum over pixels, pass techniques, and compute unit types used of the compute

demand weight and number of samples for each pixel/technique/compute unit, plus

some additional per-pixel bandwidth. For example, in variable rate shading, if 2×2

pixels share the same computing unit output, wi,a,r = 0.25. It is a constant weight in

dynamic resolution and checkerboard rendering. Note that this bandwidth demand

function is a cost function instead of being in actual bytes.

The corresponding bandwidth demand for a given sample count budget m is

S(m) =
m′∑

j=1

M(dj) +O(m′) (3.3)

m′ = f(m, σ2
0),m

′ ≤ m (3.4)

where m is the sample budget, and m′ is the actual sample count used for the

corresponding computing unit derived from a technique function f that tries to

meet certain variance criteria σ2
0 adaptively or beforehand. This technique function

53

tries to reduce the required number of samples based on different selected techniques

illustrated in Fig. 3.3 to minimize the sample demands. Usually, this function is not

automatically determined but by the algorithm designer with the help of manual

experiments. d is the raw memory demand for each sample while M is the actual

memory demand with certain memory demand reduction technique R as

M(d) = R(d) +O(d) (3.5)

This formulation gives us a good start point for reasoning how much each proposed

algorithm helps minimize the total bandwidth demands. For example, DLSS uses

dynamic resolution to minimize the compute demanding weight wi,a,r in Eq. 3.2. To

minimize sample demands, it reuses temporal histories and denoising through deep

learning in Eq. 3.4 to keep m′ low. During inference, the weight is constant and

thus can be cached efficiently. The tensor core is used to accelerate the inference

step to assure that the bottleneck is not the computing unit. From here, we can

find that DLSS does not provide innovations for memory demands minimization.

In this dissertation, the major work is in sample demand minimization. We

first introduce our novel statistically optimal real-time adaptive sampling techniques

for Eq. 3.4 to minimize m′ on the fly based on a given variance σ2
0 in Chapter 4.

Chapter 6 addresses the temporal instability issue due to dynamic lighting since

we have used the temporal variance to estimate the sample count per computing

unit. These serve as the foundation to minimize the sample demands, thus consis-

tently reducing the total bandwidth demands. The technique introduced in these

54

two chapters are generic and can be used for other rendering tasks to increase the

performance when Monte-Carlo sampling is used in real-time rendering. In Chapter

5, the general homogeneous sample demand minimization techniques (i.e., impor-

tance sampling and low discrepancy sequence) are introduced. Then we separate

diffuse from distant subsurface scattering to track the variance of distant scattering

to reduce the overestimation due to direct scattering.

For memory demands minimization, We have proposed a technique, adaptive

filtered importance sampling (AFIS), to use mipmaps in section 5.2. This technique

is different from the existing technique [Křivánek and Colbert, 2008]. In our algo-

rithm, the MIP level is affected by computing unit-varying m′ instead of a constant

sample count for all units.

For computing demands minimization, we have proposed combining two differ-

ent techniques in section 5 for subsurface scattering: Separable and AFIS because

the separable approximation has constant sample count and bandwidth demand

while AFIS minimizes the bandwidth based on the assumptions that some regions

only need a few samples to produce a low variance smooth image. For high-frequency

lighting everywhere, the Separable approximation still performs better, though with

visible variance.

3.4 Summary

This chapter introduces a taxonomy of cache and bandwidth aware real-time

rendering techniques used to address bandwidth problems from homogeneity to het-

55

erogeneity. We have also proposed a descriptive algorithm to model the bandwidth

at the algorithm level. We analyze our new rendering techniques through the tax-

onomy and performance model.

56

Chapter 4: Real-time Adaptive Sampling

“Do not plan for ventures before finishing what’s at

hand.”

—Euripides

In real-time rendering, achieving a physically correct shading result requires

real-time Monte-Carlo sampling per pixel per frame, which seems prohibitive to

achieve. Since offline rendering has already confirmed that there is heterogeneous

demand for sample count in different regions with adaptive sampling, we propose

a real-time adaptive sampling method based on temporal variance to lower the

required demand of samples.

Especially in this chapter, we propose a one-phase adaptive sampling pass,

which is unbiased and able to adapt to scene changes due to motion and light-

ing. To further improve the quality, we explore temporal reuse with a guiding

pass before the final temporal accumulation phase that further improves the qual-

ity. Fig. 4.1 visualizes the sample count based on this guiding pass. Our local

guiding pass does not constrain the global temporal accumulation implementation,

enabling us to support different temporal accumulation algorithms, including Tem-

poral Anti-Aliasing (TAA) and deep learning-based algorithms like Deep Learning

Supper Sampling (DLSS). Moreover, it requires only one additional texture to be

57

Figure 4.1: Sample count visualization in greyscale for real-time adaptive sampling
on MetaHuman character ada.

passed between frames. Our proposed variance-guided algorithm has the poten-

tial to make a stochastic sampling algorithm effective for real-time rendering. This

chapter is extended from our I3D conference (PACMCGIT) publication [Xie et al.,

2020].

4.1 Introduction

A classic adaptive sampling algorithm consists of two phases. Usually, in the

first phase, samples are gathered to determine the variance and then discarded to

avoid bias. In the second phase, an adaptive number of samples is used to reduce the

variance. However, it is inefficient for real-time application due to sample disposal

and might lead to noise due to low sample counts in the first phase. Recent research

58

tries to use all samples by posing the two sample sets as a multiple importance sam-

pling problem [Grittmann et al., 2019]. In this chapter, we make it a single adaptive

sampling guiding pass for subsurface scattering that makes use of each individual

sample. Specifically, sample variances at each frame are continuously updated into

a temporal buffer based on exponential moving variance. With temporal reuse, this

variance at each frame reflects the pixel condition in the previous adjacent frames. It

can control the sample counts for the next frame without visible noise for real-time

stochastic sampling.

Since we cannot afford too many samples per frame in real-time rendering, we

seek temporal reuse, which has recently been explored for improving the quality of 1

sample per pixel path tracing [Schied et al., 2017]. However, this work changes the

existing temporal reuse algorithm, which does not fit well into existing rendering

engines. We explore a different approach by adding a pass for guiding the subsur-

face scattering that assumes there is an existing temporal reuse pass like Temporal

Anti-Aliasing (TAA), but without assumptions about the implementation of that

temporal reuse pass, as long as it tries to make use of temporal information and to

resolve artifacts like ghosting, blurring, lag, and flickering.

4.2 Basic Metrics

To estimate the minimal sample count, we need a metric to adaptively increase

the number of samples when there is high perceivable noise and decrease when fewer

samples are sufficient.

59

We estimate the minimal number of samples,

n(i) = max
(
σ2
M(i−1)

· n(i−1)

/
σ2
0, β(i−1)

)
, (4.1)

where n(i−1) is the minimal sample count estimated in the previous frame, σ2
M(i−1)

is the pixel variance of the distribution mean estimated in the previous frame. The

purpose of this formula is to reduce the variance of the distribution mean to a target

level σ2
0. Due to lighting and the chance that we might miss some details if we have

too few samples, we always use at least β(i−1) samples.

We do not know the exact distribution per pixel, due to motion or lighting

conditions, but by the central limit theorem, given a population of a finite mean and

variance, the sampling distribution of the mean µM becomes a normal distribution of

(µ, σ2/N) as sample size increases, regardless of the shape of the original distribution.

Therefore, we can estimate the variance in means as the distribution is sampled

repeatedly across frames.

Using this algorithm to determine the minimal number of sample count in two

phases would still be inefficient (i.e., in the first pass, collect samples to gather the

variance, and estimate the sample count for rendering in the second pass). We adopt

the idea of temporal accumulation from TAA to reduce the number of samples per

frame and make it a one pass adaptive sampling technique.

60

4.3 Temporal Anti-aliasing

Temporal anti-aliasing (TAA) [Karis, 2014] is the de facto standard for anti-

aliasing in real-time rendering engines. It amortizes sampling over time with an

exponential moving average to accumulate consecutive frames in color space per

jittered pixel. When an object moves, TAA reprojects samples from the accumulated

history buffer along a per-pixel velocity vector. We summarize it as

µi = (1− α)C(xi,Λ) + αS(pi); α = M(α0,Λ); pi = N (xi, f(i)), (4.2)

where µi is the estimated value at pixel xi ∈ R
2 in frame i. α is the exponential

weight between the clamped history context term C and current-frame shading term

S. α is the per-pixel exponential moving average weight as computed by the weight

update function M based on the user defined max weight α0 and a context Λ that

includes velocity, geometry type (e..g, transparent or not), neighbors etc. C is an

operator to resample and reject the history projected from xi. Both C and M are

designed to minimize artifacts (i.e., ghosting, blurring, lag, and flickering) while

preserving anti-aliasing results [Karis, 2014, Yang et al., 2009].

S is the shading function at pi, where pi is a jittered pixel position computed by

the neighbor sampling functionN from pixel position xi and filter-kernel importance

sampling offset f .

When used to accumulate MC results across multiple frames, the clamping and

rejection performed by C and M need to either be modified to explicitly account for

61

the MC process, or the incoming variance in S must be reduced to fit their rejection

model. In modern game engines, TAA is used to accumulate samples from many MC

processes, including glossy reflection, ambient occlusion, shadowing, and subsurface

scattering. Methods that modify the clamping and rejection models for one MC

method used in isolation are not effective given the multiple types of accumulation

being performed by TAA. In this chapter, we do not modify the existing TAA

process. Instead, we create one local variance-guided phase starting from Eq. 4.2

that outputs an adaptive sampling count per pixel per frame. The sampling result

goes to the standard post-process pipeline and uses the existing TAA to further

improve quality.

4.4 Metrics within Temporal Accumulation

To reduce sample count in each frame, we perform variance and sample count

estimation in a local phase. With Eq. 4.2, we calculate an exponential moving

average (EMA) over jittered pixel values. When α is small enough, it will eventually

converge to µM = µ, the population mean [Karis, 2014]. Instead of recording all

three channels, we record the moving average of gamma-corrected luminance to

consider human perception. Knowing the sample count n(i) at frame i, we estimate

the mean sample count, n̄(i) as

n̄(i) = (1− α)n̄(i−1) + αn(i), (4.3)

62

and the population variance σ2 with exponential moving variance (EMV) [Finch,

2009] as

σ2
i = (1− α)σ2

i−1 + α(1− α)(S(pi)− C(xi,Λ))2. (4.4)

In this way, we can accumulate sample counts to solve Eq. 4.1. We now ignore

β(i−1), it can be set after we get n(i). If a consecutive k frames are accumulated, the

equation becomes
i∑

i−k+1

n(j) =
σ2
M(i−1)

∑i
i−k+1 n(j−1)

σ2
0

. (4.5)

Then the estimated sample count for the current frame is

n̂(i) =
i∑

i−k+1

n(j) −
i∑

i−k+1

n(j−1) + n(i−k) (4.6)

≈
(σ2

M(i−1)
− σ2

0)

σ2
0

· n̄(i−1) · k + n̄(i−1) (4.7)

=
(σ2

M(i−1)
− σ2

0)

σ2
0

· n̄(i−1) · (k − 1) + E [n̄(i)]. (4.8)

Since we are using EMA and EMV, we cannot maintain n(i−k), we approximate it

by n̄(i−1). Then, we estimate k as k = 2/α− 1 based a common conversion between

N -day EMA and simple moving average in analysis of financial data [Bauer and

Dahlquist, 1998]. Eq. 4.8 is the expected sample mean, E [n̄(i)] = σ2
M(i−1)

/σ2
0 · n̄(i−1)

at frame i derived from Eq. 4.5, plus a correction term. When |σ2
M(i−1)

− σ2
0| is

large, this correction term will be very large to aggressively reduce the variance to

the target level in a single frame. We add a control factor κ to limit the per-frame

63

correction. Then the final formula based on Eq. 4.8 is

n̂(i) = κ ·∆(i) + E [n̄(i)], κ ∈ [0, 1] (4.9)

∆(i) =
(σ2

M(i−1)
− σ2

0)

σ2
0

· n̄(i−1) · (k − 1), (4.10)

where ∆(i) is the correction term. At κ = 1, this favors faster convergence at the

cost of firing up to the maximum sample budget per frame, while at κ = 0 it uses

time to accumulate enough samples.

4.4.1 Circle Scenario

Ee = 4/π

r = 0.5

Ee = 0

We create a simplified subsurface scattering scenario to

help understand this estimation. We simplify the subsurface

scattering scenario model to sample uniform irradiance in a

circle of radius 0.5 centered at (.5, .5). We sample with a

uniform 2D random number (ξ1, ξ2) ∈ [0, 1)2 (instead of using

Burley’s subsurface scattering model). The accumulated irradiance is 4/π within

the circle and 0 outside. We give the sample budget of bmin = 8 spp and bmax =

64 spp, use α = 0.2 and a target quality level σ2
0 = 0.082. The history tuple

Hi = (n̄(i), µi, σ
2
i) is initialized to 0. Fig. 4.2 shows the sample count, variance and

the scattering result over 150 frames for κ = 0 and κ = 1. After a cold start session,

both methods try to converge to 1 within the given quality level. n̂(i) in Fig. 4.2(a)

and 4.2(c) shows how κ affects the actual samples used in each frame. The κ = 1

case has higher sample count peaks, usually lasting for a single frame, while κ = 0

64

0 50 100 150

Frame

0

0.2

0.4

0.6

V
a

ri
a

n
c
e

0

20

40

60

80

S
a

m
p

le
 c

o
u

n
t

(a) Sample count and variance (κ = 0).

0 50 100 150

Frame

0.2

0.4

0.6

0.8

1

1.2

Ir
ra

d
ia

n
c
e

(b) Result (κ = 0).

0 50 100 150

Frame

0

0.2

0.4

0.6

V
a

ri
a

n
c
e

0

20

40

60

80

S
a

m
p

le
 c

o
u

n
t

(c) Sample count and variance (κ = 1).

0 50 100 150

Frame

0.2

0.4

0.6

0.8

1

1.2

Ir
ra

d
ia

n
c
e

(d) Result (κ = 1).

Figure 4.2: Sample count estimation. Effect of using different correction factors
(κ = 0 vs κ = 1) in Eq. 4.9 in Circle Scenario. Disocculsion/cold start happens at
the first frame. The spike at frame 120 is due to random sampling sequence.

uses fewer samples, but with sample count increases smoothed over several frames.

4.4.2 Disocclusion

Fig. 4.2 shows the sample count per frame for a cold start, which is rare

in typical rendering scenarios. The more common case for missing history data is

disocclusion, when a previously hidden portion of an object becomes visible. We

estimate the initial history when disocclusion happens.

Denote Cs(·) as a point sampling operator without rejection on subsurface

mask history. Cs(xi,Λ) = 0 when the subsurface mask history is not available in the

65

20 40 60 80 100 120 140

Frame

0

0.2

0.4

0.6

V
a

ri
a

n
c
e

0

20

40

60

80

S
a

m
p

le
 c

o
u

n
t

(a) Sample count and variance (κ = 0).

0 50 100 150

Frame

0.9

0.95

1

1.05

1.1

1.15

Ir
ra

d
ia

n
c
e

(b) Result (κ = 0).

0 50 100 150

Frame

0

0.2

0.4

0.6

V
a

ri
a

n
c
e

0

20

40

60

80

S
a

m
p

le
 c

o
u

n
t

(c) Sample count and variance (κ = 1).

0 50 100 150

Frame

0.9

0.95

1

1.05

1.1

1.15

Ir
ra

d
ia

n
c
e

(d) Result (κ = 1).

Figure 4.3: Sample count estimation considering disocclusion with the same config-
uration in Fig. 4.2. Disocculsion/cold start happens at the first frame. We initialize
the history Hi with estimation from the initial sampling to solve the overestimation
due to disocclusion (cold start).

previous frame. Then our new M has

M′(α0,Λ) =





1 Cs(xi,Λ) = 0

α0 otherwise

. (4.11)

This operator enables the estimation of the initial sample value as S(pi) with an

initial sample count of n(i) = max(n̂(i), β(i−1)). We have no variance history, so

66

estimate the variance as

σ̂2
i (α0,Λ) =





σ2
0 Cs(xi,Λ) = 0

σ2
i otherwise

. (4.12)

Fig. 4.3 shows how the updated weight function M and variance estimation work

under the same configuration as in the Circle Scenario. The initial high sample

counts are eliminated.

4.5 Local Guiding Integration

The current adaptive sampling architecture is shown in Fig. 4.4(a). It relies

on a global temporal accumulation pass (TAA) to update the history buffer. This

design makes it depend on the existing global temporal accumulation pass, which

has three drawbacks. It requires a modification of global temporal accumulation to

output history. Second, the guiding pass might be affected by other passes like the

overlaid transparency. At last, the global temporal accumulation parameter sets

might be designed to improve the overall quality instead of a single pass.

To resolve this issue, We propose a local pass guiding for adaptive sampling in

Fig. 4.4(b). We name it single pass variance guiding (SPVG). This design decouples

the global temporal accumulation. No global temporal accumulation modification

is required, and we have a custom local quality control, and we could have better

quality input to global accumulation pass. With this design, we could even ex-

plore not only Global TAA but also other temporal accumulation algorithms. One

67

Sampling Accumulation

Sample

Estimation

gGlobal

History Buffer O(1)

Sample Count

(a) Global accumulation framework

Accumulation

Guiding…

…

Global

Local

Guiding…

…

Local

Guiding…

…

Local

…

Pass 2

Pass 1

Pass n

TAA

DLSS

…

(b) Local guiding framework

Figure 4.4: Local guiding framework for real-time adaptive sampling. (a) Instead
of relying on a global accumulation step to update the history buffer for real-time
adaptive sampling, we use (b) a local guiding framework to update the history buffer
for sample count estimation, then rely on the global accumulation for further quality
improvement. This design enables us to use not only TAA but other accumulation
designs like DLSS.

promising direction is to use Deep Learning for the accumulation. We also find that

even DLSS, which is designed to have some accumulation but not targeted for a

task (e.g., subsurface scattering), can help.

4.5.1 Global TAA

In the previous section, we estimated the sample counts at each frame with the

assumption that local and global TAA use the same configuration (i.e., Cl = Cg,Sl =

Sg,Λl = Λg,Ml = Mg and Ml(α0,Λl) = α0) so that the variance guided sampling

guides the global TAA quality. However, this is not guaranteed in a real-time

rendering engine. The TAA weight and functions are primarily tuned for artifacts

outside of subsurface scattering. In addition, the same subsurface scattering pixel

could have other contributions like overlaid transparent objects.

68

Sample count

0 100 200 300 400 500 600

Frame

10
-4

10
-2

S
ta

n
d
a
rd

 d
e
ri
v
a
ti
o
n

0

20

40

60

S
a
m

p
le

s
 p

e
r

p
ix

e
l
(s

p
p
)

0 100 200 300 400 500 600

Frame

10
-4

10
-2

S
ta

n
d
a
rd

 d
e
ri
v
a
ti
o
n

0

20

40

60

S
a
m

p
le

s
 p

e
r

p
ix

e
l
(s

p
p
)

Figure 4.5: Per-frame local variance guided Screen-space Subsurface Scattering (SSS) sampling to reach a target final rendering
quality. The image shows a test scene and two representative points, P1 (red) in shadow, and P2 (blue) fully lit. The graphs
show per-frame local (σl) and global (σg) pixel standard derivation (SD) when n̄ is estimated based on Eq. 4.3. Local target
quality level is σ2

0 = 0.012, with EMA weight αl = 0.2, and control factor κ = 1. The sample budget is [bmin, bmax] = [8, 64] spp.
The mean of local and global SD is σ̄l = 0.0097 and σ̄g = 0.0029 for P1, σ̄l = 0.0044 and σ̄g = 0.0031 for P2.

69

To make it a general technique for subsurface scattering without assumptions

on the global TAA, we choose to target a lower bound on subsurface quality to

improve the overall TAA quality. Denote γ = (C,M,N) as a solution in the space

Γ, γ ∈ Γ. The variance for a given context Λi at frame i of a pixel has σ2
i,γ = ς2(γ,Λi).

We chose γ = γ0 such that for any given sequence of length Nb:

γ0 = argmax
γ0 6=γj ,γ0,γj∈Γ

Nb∑

i=1

1σ2
i,γ0
σ2
i,γj

(4.13)

where the indicator function has 1A(B) = 1 if A <= B, otherwise 1A(B) = 0. Eq.

4.13 selects the solution that consistently produces lowest variance every frame. To

achieve this, we choose C to be a nearest neighbor sampler without history rejection,

M to be a max operator with M(α0,Λ) = α0 and N as the default sample position

when TAA is used (e.g., positions following a Gaussian distribution). In practice, it

is sufficient to be the lower bound.

To illustrate the effect of this selection, we show a sequence of per frame local

variance and global variance in Fig. 4.5 at a shadow pixel and a direct lighting

pixel. We fix αl to 0.2 (this is the maximal weight in UE4 where we implemented

our algorithm) and σ2
0 = 0.012. In this example, the mean global pixel standard

derivation is smaller. Moreover, in high variance pixel P1, the average global target

quality is 11.19 times better than the actual local quality. P2 has lower variance

than the target quality, at the minimal allowed sample count of βi−1 = 8 spp. It

results in a variance 2× better.

70

Separable

37.73 dB

TAA

48.44 dB

DLSS 2.0

50.23 dB

GT

32.35 dB 35.73 dB 38.78 dB

Figure 4.6: Quality of different global temporal accumulation methods (TAA and
DLSS 2.0) under two different intensities. The quality of Separable is also presented.
The PSNR is tested against the ground truth with 1024 spp after converting to
luminance. DLSS 2.0 has higher quality. The dmfp is 10 cm.

4.5.2 Deep Learning Super Sampling (DLSS)

The ability to do local guiding allows supporting different temporal accumula-

tion techniques other than just variants of TAA to improve the integration qualities.

That accumulation algorithm can be designed for different materials as well. Recent

advancement in deep learning brings in an opportunity for computer graphics and

real-time rendering.

NVIDIA has recently proposed a general deep learning technique for real-time

super sampling, deep learning super sampling (DLSS) [Liu, 2020]. The technique is

designed to scale a low-resolution image rendered by a real-time engine to a higher

resolution. In this way, GPUs with lower computing capability can play games at

4K resolution (3840× 2160) with a high frame rate.

DLSS 2.0 becomes a generic technique that does not need to train for a specific

71

game. It reuses temporal frames through an autoencoder to enhance the quality.

This feature allows us to preview what could come out of specialized deep learning

neural networks. Figure 4.6 shows a quality comparison between high-quality DLSS

and TAA with a single spotlight perpendicularly to the surface. DLSS has a con-

sistently higher quality than Global TAA when compared to a ground truth with

1024 spp. In the high-intensity setting, we can see the apparent energy loss due

to clamping in TAA. However, the rendering from DLSS does not have this kind

of energy loss. This is very interesting as DLSS is not designed with the target of

temporal accumulation for subsurface scattering, and it is a general technique for

upscaling. It also suggests potential quality improvement if we have a designated

neural network that is targeted for subsurface scattering.

4.6 Discussion and Limitations

Our variance-guided algorithm produces the greatest speedups when sampling

is most incoherent, since the bandwidth reduction matters most in those cases. Thus

the speedup is best for distant sampling (close views or large mean free path), or

sparse sampling. However, if the variance is very high due to the high frequency of

the surrounding regions for the whole pass, there will not be any performance boost.

We also might overestimate the pixel variance, leading to more samples than

needed. Because we haven’t distinguished the variance due to TAA jittering from

variance due to insufficient sampling. For subsurface, this might be good as every-

thing will be diffused. Note that this biased sample count might introduce unwanted

72

performance cost, but there is no bias in the final color.

Our final quality is bounded by the local target quality. Once met, no more

samples will be added. This is reflected in the Head example err2 in Table 7.2. Even

with higher max samples, it will not improve the variance at regions that already

meet the requirement. When κ = 1, the sampling contribution cannot always be

correctly reflected in the final rendering. Because the weight of the final TAA limits

the contribution of each frame.

In the dissertation, we choose a minimum number of 8 spp. This is because,

if bmin is set to 1 spp, the estimated sample count series might oscillate or flicker

due to noise from the low sample count and TAA history rejection. bmin = 4 spp

was observed to also reduce these flickering effects, and could be a good choice for

particularly time-critical use. However, we chose bmin = 8 spp to as sufficient to

remove all TAA flickering artifacts, while still benefiting from adaptive sampling.

The target variance σ2
0 is set by experience in our experiment. However, it can

also be determined statistically from Eq. 2.28.

73

Chapter 5: Subsurface Scattering

“When you are old and grey and full of sleep,

And nodding by the fire, take down this book,

And slowly read, and dream of the soft look

Your eyes had once, and of their shadows deep;”

— William Butler Yeats

In real-time applications, it is not easy to simulate realistic subsurface scat-

tering with differing degrees of translucency. Burley’s reflectance approximation,

empirically fits the diffusion profile as a whole, makes it possible to achieve realis-

tic looking subsurface scattering for different translucent materials in screen space.

However, achieving a physically correct result requires real-time Monte Carlo sam-

pling of the analytic importance function per pixel per frame, which seems pro-

hibitive to achieve. This chapter proposes an approximation of the importance

sampling function that is suitable to be evaluated in real-time. Since subsurface

scattering is more pronounced in certain regions (e.g., with light gradient change),

we propose a new importance sampling technique for real-time rendering that places

more samples in demanding regions, adaptive filtered importance sampling (AFIS).

This algorithm minimizes sample demands with real-time adaptive sampling. It

also reduces the bandwidth demands by utilizing the online generated irradiance

74

a) Ours

c) Baseline

d) Separable

e) Adaptive sample count

Adaptive 64spp

2.78 ms

1spp

2.88 ms

4.13 ms

4.03 ms

1.37 ms

4.00 ms

1.15 ms

0.67 ms

0.95 ms

8 spp 8~64 spp 8~64 spp

2 passes of 27 spp

37.58dB

37.58 dB

37.46 dB

45.70 dB

32.28 dB

40.28 dB

44.28 dB

38.98 dB

42.95 dB

b) [Golubev, 2018] 64spp

11.92 ms 11.44 ms 2.65 ms39.67 dB 45.99 dB 44.54 dB

Figure 5.1: Subsurface rendering comparison from close to far at 1920 × 1080 on
NVIDIA Quadro P4000 (implemented in UE4). (a) our adaptive sampling algorithm
(σ2

0 = 0.001, κ = 0.2, bmin = 8 spp, bmax = 64 spp), (b) Golubev [2018]’s sampling
model in our framework with 64 spp, (c) a Baseline fixed 64-sample implementation
without our proposed acceleration techniques, (d) Separable screen-space diffusion.
(e) Visualization of our adaptive sample count for each view. Our quality is higher
than Baseline in all three scenarios (close skin patch, ear, and front). Moreover, our
algorithm runs faster on the close skin patch with an acceleration of up to 91.07×
(2.78 ms vs 253.18 ms). In addition, our algorithm enables better quality with run
time comparable or even better than Separable. Error measurements are PSNR for
the subsurface, as compared to a reference image at 2K samples per pixel. Digital
Mike c©Epic Games, Inc.

75

texture mipmaps every frame. Moreover, to enable running on GPUs with different

capabilities, we propose a framework that allows users to switch different subsurface

scattering acceleration techniques (i.e., AFIS and Separable) online to balance com-

puting demands and quality. Fig. 5.1 shows the subsurface scattering result under

different distance with a total acceleration up to 91.07× with AFIS. Separable can

be switched on for consistent performance.

5.1 Efficient Sample Generation

In this section, we provide our approximation of the sampling function and

the sampling sequence generation procedures.

5.1.1 Sampling Function

The subsurface scattering exitance radiance Eq. 2.38 can be expressed in polar

coordinates as

Lo(p, ω) =

∫

∂Ω

2πrqR(rq)·
∫

S2

CFt(p, ω)Ft(q, ωi)Li(q, ωi)〈ωi, nq〉dωidrq (5.1)

with the corresponding Monte Carlo estimator at p

Lo =
1

n

n∑

j=1

2πrqjR(rqj) · Lqj

pdf qj
, (5.2)

76

0 0.5 1 1.5 2

Radius (mm)

-20

-10

0

10

20

P
e

rc
e

n
ta

g
e

 e
rr

o
r

(%
)

0

0.5

1

c
d

f

c=2.8

c=2.7

c=2.6

c=2.5715

c=2.5

cdf

Figure 5.2: Approximation error for cdf −1(ξ). Left axis) Percentage error of g(ξ)
compared to cdf −1(ξ) for different c. c = 2.5715 has the minimal cost. Right axis /
light blue) The CDF in Eq. 5.3. d is derived with A = 0.9 and ℓ = 1.0.

where Lo is the scattering result, rqj and pdf qj are the radius to center p and PDF of

the jth sample. Lqj is the accumulated diffuse irradiance at qj. To solve this equa-

tion, apart from an efficient 2D sampling sequence (ξ1, ξ2), we need to importance

sample the density function based on the CDF for radius sampling:

cdf (r) = 1− 1

4
e−r/d − 3

4
e−r/(3d). (5.3)

Christensen [2015] suggests to use multiple importance sampling (MIS) of the

two exponents, Newton iterations, or a look up table. Golubev [2019] derived an

analytic inverse solution as

cdf −1(ξ) = 3d · log(1 +G(ξ)−1/3 +G(ξ)1/3

4ξ
), (5.4)

G(ξ) = 1 + 4ξ(2ξ +
√

1 + 4ξ2). (5.5)

77

0 0.5 1 1.5 2

Radius (mm)

-10

-8

-6

-4

-2

0

2

4

6

8

10

P
e
rc

e
n
ta

g
e
 e

rr
o
r

(%
)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

c
d
f

Percentage error

Analytic

Approx

(a) The CDF

Analytic Ours

(b) 2D profile

Figure 5.3: Analytic inverse vs. our approximation. Graphs of the analytic (orange)
and approximate (dashed blue) are shown, along with the percentage error. The
image shows that the errors do not produce significant visual differences between
the analytic and our approximation for the configuration c = 2.5715 in Fig. 5.2 for
the CDF, and 2D profile rendered in UE4.

Instead, we propose to use a simpler function g(ξ) that approximates cdf −1(ξ) [Xie

et al., 2020] as:

g(ξ) = d((2− c)ξ − 2) log(1− ξ); (5.6)

where c is a parameter to control the damping of the function. We find that when

c = 2.5715, we have the minimal mean squared error of cdf (g(ξ|c)) vs. ξ as optimized

using least squares nonlinear curve-fitting [Coleman and Li, 1996] at the tolerance

of 10−6. Fig. 5.2 shows the CDF function and the approximation error.

Since this is an approximation to the inverse CDF, samples generated with it

are only a (close) approximation to the Burley PDF. To evaluate its quality, Fig. 5.3

illustrates how close the analytic inverse and our approximation are. In the beam

78

1

3

(a) MIS

1 2
(c) Ear

2

4

(b) Our approximation

3 4
(d) Eye

Figure 5.4: Infinite head (c©Lee Perry-Smith) rendered with (a) MIS and (b) our
approximation from Eq. 5.6 in PBRT. RMS error is 1.87%. We show a close com-
parison of high scattering region (c) ear and (d) eye with their pixel differences.

79

Seed Space

hash(p, t) hash(p, t+1)

r=1

rq=1.05

Sampling for p

(L = 1, A = 0.8)

p

n = 64 spp n = 64 spp

Figure 5.5: Online sampling sequence generation for real-time subsurface scattering
with R2 sequence.

light scenario (Fig. 5.3(b)), the circle light (10 flux) radius is 1 cm. Zooming into

the figure, a tiny shrink in scattering distance can be observed, but is negligible

at normal viewing distances. Further more, we implemented our approximation

into PBRT [Pharr et al., 2016] and compared it with the built-in MIS method.

Fig. 5.4 shows the rendering comparison within PBRT using the head scene. The

dmfp parameter is derived from the skin1 configuration in Jensen et al. [2001].

Our approximation has a small RMS error of 1.87% compared to multi-importance

sampling for 2K spp.

5.1.2 Sampling Sequence

Fig. 5.5 shows how the sampling sequence is generated and used for subsurface

scattering sampling, where the diffuse mean free path is 1.0, and the surface albedo

is 0.8. We use the pixel location p and the frame time t as a hash to index into

the seed space during each frame. We select the best hash function pcg3d16 for

80

16-bit format from Jarzynski and Olano [2020] to hash the 3-dimensional vector to

a one-dimensional seed index. With this index during each frame, we generate n

continuous 2D samples by incrementing the index by 1 for each sample. We find

that the 2D R2 sequence is best for the purpose as it is generated online efficiently

with a simple formula. The quality is comparable to the real-time Sobol sequence.

The R2 sequence [Roberts, 2018] is

tm = mψ,m = 1, 2, 3, ... (5.7)

ψ = (
1

φd

,
1

φ2
d

, ...
1

φ2
d

) (5.8)

where φd is the unique positive root for x
d+1 = x+1, and d is the dimension of each

sample.

The blue noise sampling sequence has the best-perceived quality when the

sample count is low. However, the utilization in a real-time engine either requires

high generation time or a large chunk of lookup table, which prevents the utilization

in our application where bandwidth is critical. It might be a good direction to

explore. However, it is outside the scope of this dissertation.

81

5.2 Adaptive Filtered Importance Sampling

In subsurface scattering, we need to efficiently get samples, e.g., at each q, on

GPU for Monte Carlo integration of the following formula

Lo(p) =

∫
R(q)b(p, q)dq. (5.9)

Instead of solving the equation with a brute force Monte Carlo estimator, we explore

increasing the sampling information with pre-filtered sampling. Prefiltering has been

successfully used in environment map importance sampling [Křivánek and Colbert,

2008] for efficient sampling on GPU. Its efficient sample count is higher due to

the filtering steps. For example, if a sample is spent to sample a higher level of

a mipmap, it is equivalent to averaging four samples from the lower MIP. We use

it for screen-space scattering irradiance sampling in our application to reduce the

sample demands.

From Eq. 5.9, we derived the filtered sample at ui by filtering the screen-space

irradiance cache b for subsurface scattering with respect to the center at p using a

spatially variant pre-filter (p is removed for simplicity as it is not changing within

the integral).

Sss(ui) =

∫
R(q)

p(q)
b(q)[h(ui − P (q))p(q)w(s)]ds (5.10)

≈ R(P−1(ui))

p(P−1(ui))

∫
b(q′)[h(ui − P (q′))p(q′)w(s)]ds

︸ ︷︷ ︸
Pre-filtered mipmap b̄(q,l)

(5.11)

82

where q′ = W (s). s = W−1(q) maps the point q in world space (mm) to screen

space texture coordinate s. The Jacobian determinant is w(s). q = P−1(u) maps

the coordinate u in uniform sampling space to world space (mm) coordinate q. The

Jacobian determinant is p(q). p(·) is the probability density function. h(u) is a

low-pass filter (e.g., 2 × 2 mean filter when creating mipmaps). The integration

term can be pre-filtered using mipmaps and retrieved by a MIP level l as b̄(q, l).

By moving R/p out, it is assumed constant over the filtered region, which is a good

approximation as the filtered region is small and p proportional to the PDF.

MIP level. Prefiltering has been successfully used in environmental map impor-

tance sampling [Křivánek and Colbert, 2008]. We use it for screen-space scattering

irradiance sampling. Specifically, we generate the MIP level with

l =
1

2
·max

(
− log2

(
a · p · n̂
ℓ2max · t

)
, 0

)
(5.12)

t =
w

D

w · AspectRatio
D

=
(w
D

)2

· AspectRatio (5.13)

where ℓmax is the max diffuse mean free path of the three-channel subsurface profile.

a is a constant factor to scale the MIP level. t is the texel size in screen space

considering world unit scale w, D is the scene depth at the center sample. We find

a = 1
16

gives a good balance between quality and performance.

Adaptive Algorithm. This MIP level formulation enables us to perform adaptive

filtered importance sampling for subsurface scattering. Namely, we perform filtered

importance sampling with real-time adaptive sampling shown in Algorithm 2. Note

that this algorithm is the basic form. It can be improved to handle artifacts like

83

Algorithm 2 Adaptive Filtered Importance Sampling

Require: p(the target pixel in world coordinate for Monte Carlo integration)
1: n̂ = Eq. 4.9 (Sample Count Estimation)
2: Lo = 0
3: for i = 1, 2, ..., n̂ do

4: ui =Uniform2DSequence(i)
5: qi =ProjectToWorldCoord(ui) ⊲ Base unit = 1mm
6: pdf = SamplePDF(qi)
7: lod = Eq. 5.12 (Compute Mip Level)
8: B = tex2Dlod(b̄,W−1(qi), lod)
9: Lo+ = B · SampleProfile(qi)/pdf

10: end for

11: return Lo/n̂

bleeding with bilateral filtering. The main difference AFIS has to the prefiltered

importance sampling [Křivánek and Colbert, 2008] is that the sample count n̂ is

adaptively determined and can affect the MIP level selection. For example, when

the surrounding lighting is smooth, AFIS leads to fewer samples and higher MIP

levels, thus significantly reducing the bandwidth demands than adaptive sampling

or filtered importance sampling alone.

5.3 Advanced Design

In this section, two different rendering acceleration techniques are explored

for subsurface scattering. One is to further optimize the efficiency of the adaptive

filtered importance sampling to monitor variance change of distant scattering only

without diffuse because diffuse is already known, and the TAA algorithm (a temporal

filter of neighbor pixels) will create a variance due to subpixel jittering.

Another acceleration is based on our heterogeneous real-time rendering frame-

work to explore the heterogeneous computing space. We combine two acceleration

84

types to perform hybrid subsurface scattering. The idea is similar to combining

rasterization with a ray tracing pipeline, a hot topic in real-time rendering [Barré-

Brisebois et al., 2019, Haines and Akenine-Möller, 2019]. In this way, the type of

subsurface scattering can be changed at run time by the users to give important

regions higher quality through AFIS or stable performance through the separable

filter.

5.3.1 Unification of Scattering

Scattering decomposition. Due to the resolution of B(p, q, ω) in practice, the sam-

pling resolution is bounded by texel size t = (w, h). Denote the diffuse scattering

sampling radius as r0 = Z
√
w2 + h2/2, where Z is the depth of p, we divide the

region into a direct scattering (or diffuse) region ∂Ωd, and distant scattering region

∂Ωs, ∂Ω = ∂Ωd ∪ ∂Ωs as shown in Fig. 5.6. From Eq. 2.38 we have:

Lo(p, ω) =Ld(p, ω) + Ls(p, ω) (5.14)

=

∫

∂Ωd

R(rq)b(p, q, ω)dq +

∫

∂Ωs

R(rq)b(p, q, ω)dq (5.15)

=B(p, p, ω) · cdf (r0) +
∫

∂Ωs

R(rq)b(p, q, ω)dq (5.16)

where the first term in Eq. 5.16 is the analytic result after a change of variables

from the Cartesian coordinate system to the polar coordinate system with the as-

sumption that the covered region of direct scattering has constant lighting and it

can be approximated by the discrete representation B(p, p, ωo). Because we have

85

2 4 6 8

Direct scattering Distant scattering

CDF(r)

w

h

r

Lighting texture

with resolution grid (20x20)

Separating direct & distant scattering

pdf(r)

Figure 5.6: Subsurface scattering with sampling resolution.
∫ r0
0

2πrR(r)dr = A · cdf(r0) by Christensen and Burley [2015], where A is the sur-

face albedo. We ignore this constant for simplicity. It can be introduced back with

a direct multiplication after subsurface scattering [Xie et al., 2020]. If we deploy

importance sampling for this formula with rq ∼ pdf (r), and the corresponding cumu-

lative density function (cdf) inverse g(ξ) = cdf −1(ξ), the numerical approximation

is

E [Lo(p, ω)] ≈ B(p, p, ω) · cdf (r0)+

1

m

n∑

i=n−m+1

2πrqiR(rqi)B(p, qi, ω)

pdf (rqi)

(
1− cdf (r0)

)
. (5.17)

where rqi = g((1− ξi) · cdf (r0)+ ξi), n is the sample count for subsurface scattering,

and m = n(1− cdf (r0)) is the effective sample count for distant scattering. In

this formulation, we directly use the pre-integrated lighting for diffuse, and weight

between diffuse and scattering based on cdf .

Generalization. With Eq. 5.17, we summarize the real-time subsurface scattering

86

model for a given ω as:

Lo(p) = (1− γ) · B(p, p) + γ · Ls(p,RF , ∂Ωs) (5.18)

where γ is distant scattering energy ratio to blend the pre-integrated direct lighting

and un-normalized distant subsurface scattering Ls(p, SF , ∂Ωs), RF is the corre-

sponding subsurface scattering profile. Table 5.1 shows the realization of γ and RF

for different models.
Table 5.1: The realization of different subsurface scattering models.

γ RF Reference
Normalized Burley 1− cdf b(r0) Rb [Burley, 2015]

Dipole 1− cdf d(r0) Rd,ss+ms [Jensen et al., 2001, Mertens et al., 2003]
Pre-Integrated Separable c Rd,ms −RG0

[Jimenez et al., 2015]

Specialization. The generalization provides us a way to reason about existing sub-

surface scattering models and whether they are applied in the same way for real-time

rendering. For example, the artist friendly separable subsurface scattering [Jimenez

et al., 2015] uses a constant blending factor c (strength) and a modified profile

R̃d = Rd,ms − RG0 where RG0 is the Gaussian approximations with the minimal

variance. The result is consistent with offline dipole models, only when:

c =
(1− cdf d(r0)) · (B(p, p, ω)− Ls(p,Rd,ss+ms, ∂Ωs))

B(p, p, ω)− Ls(p, R̃d, ∂Ωs)
(5.19)

Unified representation. Since γ is dependent on parameters of the CDF (e.g., diffuse

mean free path for Burley), resolution and depth, we are able to enable 0 spp for

87

distant scattering when most scattering is less or equal to one pixel as

m̂(i) =





0 γ < ǫu

n̂i · γ otherwise

(5.20)

where ǫu is a small constant to determine when distant subsurface scattering is not

performed. Fig. 5.7 shows an example of scattering regions with different ǫu. Most

of the walls do not need distant scattering when ǫu = 0.05. Note that the estimator

becomes biased due to energy loss when ǫu > 0. As with other uses of biased

estimators in rendering, this can remove unnecessary samples for distant scattering

and variance tracking, but needs to be used carefully.

(a) Scene (b) ǫu = 0.0 (c) ǫu = 0.05

Figure 5.7: Direct/diffuse region (black) and direct+distant (white) (b,c) for scene
(a). The vertical line on the wall (c) is the boundary where only 5% of scattering
energy is from distant scattering.

With this formulation, instead of estimating n̂i first and then calculating the

sample count mi for distant scattering, we can directly estimate m̂i with Eq. 4.9

with the history tuple Hi = (µi, σ
2
i , m̄i). Then the target quality σ2

0 is set for

distant scattering. This switch also implies that the variance contribution of the

direct scattering due to temporal change (e.g., jittering and lighting change) has

been removed. It will not affect the sample count estimation.

88

5.3.2 Importance-Guided Acceleration

Real-time subsurface scattering has already found its way in current genera-

tion real-time and game rendering engines before our techniques came into being.

Different acceleration techniques have their own pros and cons. For example, the

separable approximation has banding artifacts for close views but runs consistently

fast due to coherent memory access no matter how complex the subsurface scattering

material is. MC sampling has the best quality for movie presentation but is a little

expensive even with our proposed adaptive filtered importance sampling. For exam-

ple, the separable approximation runs slightly faster in the middle and right image

in Fig. 5.1. For fullscreen subsurface scattering, even when we have temporally

stable adaptive sampling through Control Variates in Fig. 6.1, the Separable ap-

proximation runs a little faster. By choosing different acceleration techniques based

on quality importance concurrently, subsurface scattering would run faster and with

higher perceived quality. For example, the primary character model could use adap-

tive filtered importance sampling, while non-focused other monsters or characters

can use the Separable approximation technique. This performance and quality bal-

ance motivate us to create a coherent rendering system that uses all acceleration

techniques.

This section proposes a system framework to support importance-guided ac-

celeration, namely, to support multiple acceleration techniques (i.e., Separable ap-

proximation and adaptive filtered importance sampling) in the same frame. The

users only need to switch the model based on their design requirements, which is

89

easily achievable.

Before showing the proposed approach, the pass view with only adaptive fil-

tered importance sampling (see Section 5.2) for subsurface scattering is illustrated

in Figure 5.8. Different techniques can be combined after prefiltering and combined

before the multiplication of base color. Figure 5.9 shows the overview of the new

Setup
Variance guiding phase

Sample
Estimation Update

SceneColor

SSS MC
Importance
Sampling

Sample Count

Diffuse Irradiance

Non-Subsurface

Scattering result Base Color

Combined

Prefiltering

Figure 5.8: Subsurface pass overview. The variance guiding phase enables one
pass adaptive sampling. In each frame, this pass 1) estimates the number of samples
per pixel per frame and 2) updates the historyHi. During sampling, adaptive filtered
importance sampling algorithm 2 is performed in SSS MC Importance Sampling.

subsurface scattering pass. The sub-passes enable our flexible subsurface scattering

in high quality and performance based on importance. A detailed description of

different passes are as below:

• Setup pass. We mask out all non-subsurface colors using a profile id and

combine the diffuse with depth into a single texture to save bandwidth for

primary pass sampling. Since different subsurface scattering profiles have a

unique id, they are extracted separately from the specular and non-subsurface

components. Those ids are gathered into different GPU buffers to support

importance-guided acceleration. Specifically, two technique ids are included:

Separable approximation and adaptive filtered importance sampling (AFIS).

90

P4Irradiance
pre-filtering

Diffuse

Indirect
Dispatch

P2: Horizontal P3: Vertical

History update

Specular

P1:Variance-guided
MC sampling

History

Buffer One

Velocity

Buffer TwoSceneColor

Combine pass
Dipole profile

w/ Separable filter
Burley's profile

w/ AFISFitting
Burley's profile

w/ Separable filter

P3P2 P1 P4 P3P2

Profile
Buffer

Setup

Copy

Transmistance pass
Apply

Figure 5.9: Design overview of the new subsurface scattering pass to sup-

port importance-guided acceleration. 1). During setup, we extract subsurface
diffuse irradiance, specular, and create the profile indirect dispatch buffer. For AFIS,
it runs through P1: variance-guided MC sampling and P4 that copies AFIS buffer
and updates a history texture for stable variance estimation. For Separable approx-
imation, it runs through P2 and P3 for horizontal and vertical sampling. The pass
sequence is specially designed in this order to have both acceleration techniques
rendered correctly. 2). Separable dipole model can be automatically upgraded to
Burley with a fitting profile (shown in Appendix A).

At last, we register the technique id for each thread group and record it into two

technique buffers. We then dispatch different subsurface acceleration passes.

A naive method for N acceleration technique implementation is to concatenate

the N technique passes. However, suppose AFIS and Separable techniques are

independently implemented in three passes (i.e., one pass for AFIS and two

passes for Separable filtering) and concatenated together, there will be no per-

formance benefits supporting both techniques at the same time. Instead, we

can use indirect dispatch to schedule different techniques; each computing unit

only needs to call the corresponding code for different techniques. However,

our case is more complicated. Separable requires a full texture integration with

horizontal and vertical passes. Because of this, we cannot leave some regions

91

untouched after the first pass (as those regions are reserved for AFIS). Oth-

erwise, there would be dim borders between the two acceleration techniques.

Moreover, AFIS requires two passes. The first pass is to perform sampling,

and the second pass requires at least a copy. First, we use the AFIS result

as an approximation for the first pass in the Separable filter to handle those

issues. Since two passes are inevitable, we can shift some operations for AFIS

to the second pass to reduce potential bandwidth. Then the four passes are

executed in the order of P1 to P4, as shown in Figure 5.9.

• Irradiance prefiltering pass. Since we have limited budgets for MC sam-

pling, we build a mipmap chain to prefilter the diffuse irradiance so that each

MC sample can pick up more sample information. This pass is inevitable be-

cause of the filtered sampling used in AFIS to accelerate the rendering. Build-

ing mipmaps every frame seems expensive. However, it takes at most 0.17ms

for 5 MIP level generation for 1080p on NVIDIA Quadro P4000, which is a low

overhead. Please refer to Table 7.1 for more overhead details it takes under

different configurations.

• P1: AFIS pass. In this pass, we call the AFIS algorithm 2 for those pixels

whose technique id is marked as AFIS. We first estimate the number of sam-

ples required at each pixel to reduce the sample variance to a target noise level

based on our proposed real-time adaptive sampling algorithm. We use the pro-

posed inverse CDF approximation function to enable fast sample generation

on the fly to sample from the diffuse irradiance texture. To further reduce

92

the variance, we estimate a MIP level based on the profile configuration and

retrieve diffuse irradiance. Note that the history update for real-time adap-

tive sampling has been shifted to P4 for the concern of potential bandwidth

demands.

• P2: Horizontal and P3: Vertical sampling pass.The shading code for

Separable filtering is called sequentially for horizontal and then vertical in these

two passes. In the horizontal and vertical sampling pass, the pre-integrated

weighted Gaussian kernel for the subsurface profile is used to sample the diffuse

irradiance for the best performance.

• P4: multi-functional pass. In the multi-functional pass, We copy the AFIS

sampling result to the next buffer. As a free ride, we update the history buffer

of the current pixel. Since the scene will constantly change and the camera

moves arbitrarily, reprojection is performed with velocity texture to get the

history of the current pixel in the previous frame for the history update. Since

the adaptive sampling algorithm might suffer from performance drop due to

dynamic lighting, specifically, the algorithm 4 and 5 are performed for more

stable adaptive sampling. Please refer to Chapter 6 for more details.

• Combine pass. At last, we modulate the subsurface scattering diffuse from

buffer two on the base color, which is served as the surface albedo as illustrated

in the pass overview for AFIS technique only in Figure 5.8. Next, we combine

the result with the specular based on the subsurface profile setting.

Since the Separable approximation technique is previously for the Dipole model

93

only, we provide a fit between Dipole and Burley’s model. To achieve this, we

approximated the relationship between new and old parameters with a quadratic

equation. The fitting process is in Appendix A. With this fitting, we can also

upgrade the transmittance to use Burley’s model. In this way, all two real-time

acceleration techniques can be supported at the same time. The user can switch

different acceleration techniques in the game thread.

5.4 Summary

This chapter proposes a novel efficient sampling approximation function that is

efficient for online evaluation, and introduced how the sample sequence is generated.

We also proposed a novel algorithm, adaptive filtered importance sampling (AFIS),

for photorealistic subsurface scattering. This technique not only minimizes the

sample count but also increases the sampling efficiency for each sample.

In the advanced design, we separate the diffuse and distant scattering. The

variance of distant scattering is tracked, which removes the effect of diffuse variance

to sample count estimation and allows 0 samples per pixel for distant scattering. At

last, an acceleration framework that can be used to balance quality and performance

is proposed.

94

Chapter 6: Real-time Control Variates

“Nothing puzzles me more than time and space; and

yet nothing puzzles me less, for I never think about

them.”
—Charles Lamb

Real-time adaptive sampling adaptively places samples based on temporal vari-

ance tracking. However, if the temporal signal has high variance, it will lead to high

variance that should not be used for adaptive sampling to reduce spatial variance.

The occasional performance drop due to temporal lighting dynamics (e.g., gunshots,

explosions or lights turning on and off) could hinder adoption in games or other ap-

plications where a smooth high frame rate is preferred.

This chapter explores a novel usage of Control Variates (CV) in the sample

domain instead of the shading domain to maintain a consistent low pass time. To

achieve this, a novel joint-optimization algorithm for sample count and CV coeffi-

cient estimation is proposed. The major enabler is our novel time-variant covariance

updating method that helps remove the effect of recent temporal dynamics from vari-

ance tracking. Since bandwidth is critical in real-time rendering, a solution without

adding any extra textures in the adaptive sampling framework is also provided.

This chapter is extended from our I3D conference (PACMCGIT) publication [Xie

95

(b) Separable [Jimenez et al. 2015] (c) SPVG [Xie et al. 2020] (d) Ours

(a) Ours

Figure 6.1: Dynamic subsurface scene just after light has been turned off. Our
method has consistently lower sample count (d) than SPVG [Xie et al., 2020] (c)
at this frame. It leads to lower sampling pass time in dynamic lighting from 12.9
ms to 5.2 ms at 3360 × 1440 (×2.5), while maintaining good quality (47.5 dB) vs
SPVG (48.6 dB). Separable (b) runs fastest for the whole subsurface pass at 4.0 ms,
however, with visible banding artifacts.

and Olano, 2021].

6.1 Introduction

Real-time adaptive sampling proposed in Chapter 4 is a general technique,

and has been used for subsurface scattering with importance sampling of Burley’s

normalized diffusion profile [Xie et al., 2020]. It has been adopted in real-time

rendering engines (e.g., Unreal Engine 4). Its low time and space complexity O(1)

increases the sample efficiency of Monte Carlo algorithms for real-time rendering.

The basic idea is to use sample histories in the shading domain to estimate the

spatial Monte Carlo sampling variance and adjust the sample count to minimize the

sample count for a target variance level in real time.

However, if high temporal variance is present after history projection, it will

96

also increase the sample count and pass time to achieve convergence. Real-time

applications like games are intrinsically dynamic, including i) gunshots/lightning

creating rapid incoming radiance changes, ii) dynamic light particles changing in-

tensities, and iii) moving objects creating dynamic shadowing.

In this chapter, we propose a novel technique, real-time subsurface control

variates, to address the issue. Control variates is a variance reduction technique for

Monte Carlo sampling. If we can find a good approximation of the sampling function,

with the optimal CV coefficient, the variance after MC sampling can be reduced

given the same number of samples. In other words, given a target variance, the

sample count can be minimized. Note that the application of CV in this paper is a

little different from the typical use. We only reduce the monitored change in variance

caused by the lighting changes as shown in Fig. 6.1, but keep the same variance

as the MC estimator when the lighting is static because the monitored variance

controls the sample count estimation [Xie et al., 2020]. In this dissertation, we focus

on real-time subsurface scattering. To have real-time subsurface scattering anytime

and anywhere efficiently using control variates, the following three challenges are

addressed:

1) Evaluate the time-variant covariance matrix. Calculating the optimal CV coef-

ficient online requires a covariance matrix that captures the recent spatial correla-

tions between the sampling function and the control for time-variant scenarios like

dynamic lighting, yet without temporal variance. We propose a novel covariance es-

timation based on the CV residual, the exponential moving covariance matrix. We

compare this to the widely adopted exponential weighted moving average (EWMA)

97

covariance estimator [Guldimann et al., 1995].

2) Compute the optimal CV coefficient online. We provide online joint estimation

algorithms to find the sample count and the CV coefficient numerically. Since the

estimated coefficient is dependent on the control variable with unknown distribu-

tion, the rendering result based on the control variates might be biased [Lavenberg

et al., 1982]. To avoid this issue, we shift the application of CV from the shading

domain to the sample domain, where the CV guides sample count estimation. In

this way, we also shift potential bias from the shading domain to the sample domain

as biased sample count. Since our online covariance computation assures sample

count overestimation, the final subsurface scattering shading result is still unbiased,

though possibly using more than the absolute minimal number of samples. Never-

theless, the rendering time for subsurface scattering is reduced up to 3.11× during

dynamic lighting tests.

3) Lightweight CV coefficient. Since online optimal CV coefficient estimation still

requires an additional texture and real-time computation, this might violate the

memory budget for time critical applications. Under such scenarios, we also provide

a lightweight offline approximation for the optimal CV coefficient without adding

any additional textures.

The major contribution is summarized as below:

• Derived exponential moving covariance matrix as an extension to the largely

adopted EWMA covariance estimator.

• An online sample count estimation algorithm jointly estimated with optimal

98

CV coefficient estimation to remove temporal influence.

• A lightweight CV without adding any extra textures.

-2 0 2

x

0

1

2

3

(a) Lighting spatial

profile

0 1 2

Time (t)

-0.5

0

0.5

1

1.5

2

2.5

In
te

n
s
it
y
 s

c
a

le

(b) Lighting temporal

profile

(c) Spatial & tempo-

ral result

(d) Spatial & Sample

count

(e) Spatial & Vari-

ance

-2 0 2

x

0

1

2

3

(f) Lighting spatial

profile

0 1 2

Time (t)

-0.5

0

0.5

1

1.5

2

2.5

In
te

n
s
it
y
 s

c
a

le

(g) Lighting tempo-

ral profile

(h) Spatial & tempo-

ral result

(i) Sample count (j) Variance

Figure 6.2: Temporal instability leads to sample count over-estimation with real-
time adaptive sampling. Diffuse lighting on a 1D surface is shown in (a) and (f).
During subsurface scattering sampling, when lighting is temporally stable (b), the
estimated sample count (d) leads to lighting (c) with a variance close to target vari-
ance 10−4 (e). When lighting is not stable (g), although we can get high quality
lighting (h), rmse = 0.0028, the sample count(i) is over estimated because of tem-
poral variance in (j). Temporal instability induces 242% (i) as many samples as that
shown in (d) on average in this example. The induced calculation and bandwidth
demands might threaten the performance with real-time adaptive sampling.

6.2 Motivating Example

In real-time adaptive sampling, there are two major contributions to the vari-

ance: spatial variance due to MC sampling, and temporal variance due to lighting

changes.

Spatial variance. Fig. 6.2(a)–(e) shows a 1D example of spatial variance with

stable lighting over 2 seconds. For the lighting gradient change region around x ∈

[1, 2], the sample count is estimated to the max budget allowed at 64 spp to minimize

the variance to σ2
0 = 10−4 as shown in Fig. 6.2(e).

99

Temporal variance. Dynamic lighting introduces temporal variance. For exam-

ple, it could be caused by gunshots, dynamic lighting particles, or moving objects

that occlude/dis-occlude lighting randomly for a shading point. This variance is

present as we use temporal histories. It leads to sample count overestimation. We

demonstrate it in the same setup in Fig. 6.2(f)–(j), lighting intensity changes over

time is shown in Fig. 6.2(g). It leads to high sample count Fig. 6.2(i) across space to

reduce the high variance Fig. 6.2(j) induced by temporal lighting changes. It leads

to sample count increase by 242% in this example. It is critical to mitigate the effect

of dynamic lighting changes for real-time performance.

6.3 Control Variates

In the rendering literature, control variates (CV) has been used to increase

Monte Carlo (MC) rendering efficiency. The basic idea is to modify the original

function with a known integral corrected by an coefficient over a spatial domain

(e.g., 2D surface or 3D Volume)

F (x) = a(x) ·G(x) +
∫

y∈D

f(x, y)− a(x) · g(x, y)dy, (6.1)

whereG(x) =
∫
y∈D

g(x, y)dy and the optimal CV coefficient has a = Cov(f, g)/V ar(g)

[Lavenberg et al., 1982]. In this chapter, we deal with temporal change for sample

estimation. Instead of working in the space domain, we extend the concept to the

time domain to address time-variant instability. This is slightly different from prior

techniques that minimize MC estimator variance in static scenes. The modified

100

formula is:

F (x, t) = a(x, t) ·G(x, t) +
∫

y∈D

f(x, y, t)− a(x, t) · g(x, y, t)dy. (6.2)

In non-real-time rendering, time can be regarded as another dimension. If x ∈ R
n,

then (x, t) ∈ R
n+1. However, in real-time rendering only limited history can be

accessed at t for performance and storage, and no forward time evaluation is possible.

In real-time adaptive sampling, only one history texture is utilized, we explore in

the same spirit to make control variates possible in real-time rendering.

We use CV to reduce the influence of temporal variance. Starting from Eq. 6.2

and 5.16, we introduce the control variable at time t for position p as g(q, t) where

p is neglected for simplicity. Then we have time dimension in distant subsurface

scattering as

Ls(t) = a(t) ·G(t) +
∫

∂Ωs

R(rq)b(q, t)− a(t) · g(q, t)dq
︸ ︷︷ ︸

Res(t)

. (6.3)

Denote f(q, t) = R(rq)b(q, t), and suppose we have a realization of g(q, t) whose

known integral is G(t), which captures most of the temporal varying component.

The optimal coefficient can be estimated with a∗ = Cov(f, g)/V ar(g) after sampling

using the mt samples (Table 6.1 shows some selected symbols). However, we might

not have enough samples in one frame to get a good estimation. Instead, we use the

covariance of the two batch means to estimate the CV coefficient and use history

to improve the estimation, because we have Cov(X, Y) = nCov(X̄, Ȳ) (see Ap-

101

pendix B.2). It leads to a∗ = Cov(X̄, Ȳ)/V ar(Ȳ). This enables us to estimate the

coefficient with temporal observations over time with online covariance estimation

instead of just in a single frame. Then, the actual sample count could be estimated

based on the residual component Res(t) with minimal temporal variance.

6.4 Theory

Before running into the detail of the online updating algorithm, we provide

a simplified theory to guide the algorithm design. We assume that the temporal

change component can be independently separated out from the function to integrate

f(q, t) and the control variable g(q, t).

Namely, we have three random variables T , F , and G. TF is the function to

estimate, TG is the control variable. Then the general optimal CV coefficient is

a∗ =
Cov(TF, TG)

Var(TG)
. (6.4)

When T is independent from F and G, the variance for 〈TF 〉 and the residual

variance are

Var(〈TF 〉) = Var(T (F − aG)) + Var(aTG) + 2Cov(T (F − aG), aTG),

(6.5)

Var(T (F − aG)) = E [T]2Var(F − aG) + Var(T)Var(F − aG) + Var(T)E [F − aG]2

(6.6)

102

where 〈TF 〉 is an unbiased estimator. The goal in this paper is to reduce the

variance contribution of T to Var(〈TF 〉) during variance tracking. For distant

subsurface scattering as illustrated in Eq. 6.3 when the lighting intensity T = I(t)

is independent from the scattering function F and the control variable G, we have

F =
Ls(tr)

I(tr)
=

∫

∂Ωs

R(rq)
b(q, tr)

I(tr)
dq, G =

G(tr)

I(tr)
=

∫

∂Ωs

g(q, tr)

I(tr)
dq, (6.7)

TF = Ls(t) = I(t)
Ls(tr)

I(tr)
, TG = G(t) = I(t)

G(tr)

I(tr)
, (6.8)

where I(tr) is a reference intensity I(tr) 6= 0 at time tr. This assumption holds

when the intensity of all lights (e.g., point light, directional light and spotlight) are

controlled by a single intensity parameter I(t). Because we have a linear relationship

between the intensity of incoming lights and the exitance radiance as shown in Eq.

2.38 and Eq. 2.39. Although g(q, t) is unknown, it does not affect the reasoning in

this section. Please refer to Section 6.5 for a concrete realization.

6.4.1 In-frame Standard Control Variable

In standard CV, CV requires Monte Carlo sampling and E [TG] is expected

to be known. Since T is independent, we have E [TG] = E [T]E [G]. However, E [T]

is unknown. Even if our proposed algorithm can estimate E [T] to some extent, the

MC sampling of G brings in variance, which makes the estimation more vulnerable.

Fig. 6.3 illustrates the basic idea by using our CV coefficient updating algorithm.

The temporal dynamics is introduced by a sine function . It demonstrates an ability

to adjust a under both static and dynamic lighting (see Appendix B.3).

103

0 0.5 1

y

0

0.5

1

(a) f and g (b) a∗ ≈ 0.477 (c) a∗ ≈ 1.388

Figure 6.3: Illustration of our novel application of CV. For function f and g (a),
a standard CV coefficient estimation results in (b) with a residual vulnerable to
temporal variance. However our method can find the coefficient that leads to (b)
during time-invariant scenarios, but to (c) during time-variant scenarios, where the
residual is near zero. The residual variance is less vulnerable to temporal change.

Even worse, as TG and TF need to be sampled in a correlated way. It often

means the bandwidth demand doubles in real-time rendering. Monte Carlo sampling

leads to further cache incoherence. This is against the idea of real-time adaptive

sampling, where bandwidth demand is minimized by reducing sample count with

extremely low overhead. Because of this, applying standard CV to maintain stability

for real-time adaptive sampling does not seem to be an attractable feature even when

we have demonstrated some capability in Fig. 6.3.

6.4.2 In-frame Constant Control Variable

To deal with the bandwidth demand hazard, a known in-frame constant can

be used as the control variable. Namely, E [G] is constant with Var(G) = 0. This

only adds a low overhead as one texture fetch. Under this condition, however, we

104

do have a valid best CV coefficient derived from Eq. 6.4 as:

a∗ =
E [F]

E [G]
=

E [TF]

E [TG]
. (6.9)

With this formula, the optimal CV coefficient for the example in Fig. 6.3 has a∗ =
∫ 1
0

1
1+y

dy
∫ 1
0 1−ydy

= ln(4) ≈ 1.386, and E [F − a∗G] = 0. Then Eq. 6.5 and Eq. 6.6 simplify

to

Var(〈TF 〉) = Var(T (F − a∗G)) + Var(T)E [F]2, (6.10)

Var(T (F − a∗G)) = (Var(T) + E [T]2)Var(F). (6.11)

This analytic CV coefficient is the reason why the CV coefficient in Fig. 6.3 under

dynamic lighting is approximately 1.386. When (F − aG) → 0, the right term

diminishes in both Eq. 6.5 and Eq. 6.6, leaving only one controllable variance

Var(F) in the residual variance that should be considered for variance tracking.

More specifically for subsurface scattering with Eq. 6.7 and Eq. 6.8, this optimal

CV coefficient is

a∗(t) =
E [Ls(tr)]

E [G(tr)]
=

E [I(t)Ls(tr)]

E [I(t)G(tr)]
=
E [Ls(t)]

G(t)
(6.12)

where G(t) is constant at frame t and I(t) 6= 0. Then, our online algorithm for

subsurface scattering is designed with the following guidance:

1. Use analytic optimal CV from Eq. 6.9 for regions where intensity dynamics T

105

Table 6.1: Selected Symbols

Symbol Description

H Real-time adaptive sampling history
α Exponential moving coefficient
σ2
0 Target variance level for adaptive sampling
n Sample count for total scattering
m Sample count for distant scattering
J Control Variates history
a Control Variates coefficient
g(t) Control variable at time t

G(t)
Integration of g(t), a known constant
value at time t that varies according to time.

R(r) Diffuse reflectance profile
b(p, q, ωo) Lighting contribution at p from q for direction ωo

b(t) Lighting contribution at p from p at time t
B(p, q, ωo) Discrete pre-integrated lighting texture for b(p, q, ωo)

B(t) Pre-integrated lighting at texture point p at time t
γ Distant scattering energy ratio

is independent from F and G.

2. Adaptively switch to use online estimation of Eq. 6.4 to estimate the CV

coefficient when the assumption does not hold.

6.5 Online Solution

In this section, a novel online covariance estimation method is first introduced.

We then provide our online CV coefficient and sample count joint estimation algo-

rithm. To provide a concrete example for a∗ estimation that separates out time-

106

variant signal, we select one reasonable realization of f, g as

f(q, t) = R(rq)b(q, t), f̄ ≈γLs(t), (6.13)

g(q, t) = R(rq)b(t), ḡ =G(t) = γB(t). (6.14)

Note that f̄ and ḡ are the MC sampling result of the integration at time t. They are

not necessarily equal to the analytic integration if the control variable requires Monte

Carlo sampling. However, we use in-frame constant control variable to maintain

temporal stability and deal with the bandwidth hazard. Therefore, ḡ = G(t). b(t)

is the lighting contribution at p itself at time t. It leads to a constant integration of

γB(t), where B(t) is a texture fetch directly at texel p in the pre-integrated lighting

texture. Since the algorithm will run for each p, we ignore p for simplicity. Note that

this fetch can also be queried from different level of details to add in the correlation of

temporal intensity change of surrounding lighting for further optimization. However,

it is outside the scope in this paper. With this realization in large flat lighting region,

Eq. 6.12 leads to

a∗ = 1, (6.15)

the main part separation, and we have zero variance during dynamic lighting.

107

6.5.1 Online Covariance

Covariance is a fundamental concept in computational statistics and has great

applications in many fields. When memory is limited, it is critical to have a single

pass online algorithm. Welford [1962] proposed an online single pass algorithm to

calculate the overall covariance numerically when each value is equally weighted.

In a real-time time-variant system, weighted covariance that favors latest results

are used to track temporal changes. Two notable examples are the prediction er-

ror covariance matrix update in the Kalman filter [Welch et al., 1995] with varying

weights, which is frequently used in control systems, and the EWMA covariance

estimator [Guldimann et al., 1995, Tsay, 2005] in finance with constant weights. In

this chapter, we exploit the boundary of second case. We propose an online expo-

nential moving covariance matrix that is mathematically derived from the weighted

covariance matrix with inspiration from exponential moving variance [Finch, 2009].

We also provide its relationship to the well-known EWMA covariance estimator.

Moreover, we demonstrate how temporal covariance can be removed during the

monitoring.

6.5.2 Exponential Moving Covariance (EMC)

For two random variable X, Y that are incrementally observed according to

time as {x0, x1..., xt} and {y0, y1, ..., yt} with a constant weight of α, the exponential

108

moving covariance between them at time t (t ≥ 1) is:

Cov t(X, Y) =(1− α)Cov t−1(X, Y)+

α(1− α)(xt − µt−1)(yt − υt−1) (6.16)

where xt, yt are the current observation, µt−1, υt−1 are the corresponding expo-

nential moving average at t − 1, and Cov 0(X, Y) = 0. Since there is no ref-

erence in the scientific literature, we provide a detailed proof in Appendix B.3.

The new covariance formulation enables direct calculation of CV coefficient as

at(X, Y) = Cov t(X, Y)/Var t(Y). Then, we can derive a more generalized matrix

form.

6.5.3 Exponential Moving Covariance Matrix (EMCM)

If we have a time series vector ZZZt ∈ R
n×1 with the exponential moving average

at time t as ζζζt ∈ R
n×1, then the covariance matrix ΣΣΣt(t ≥ 1) is

ΣΣΣt = (1− α)ΣΣΣt−1 + α(1− α)(ZZZt − ζζζt−1)(ZZZt − ζζζt−1)
T (6.17)

where ΣΣΣ0 = 0n×n. This is different from EWMA covariance estimator used in stock

analysis [Guldimann et al., 1995] as

Σ̃ΣΣt = (1− α)Σ̃ΣΣt−1 + α(ZZZt − ζζζt−1)(ZZZt − ζζζt−1)
T . (6.18)

109

The estimator uses the previous history at t − 1 to predict the value at t, solving

for the estimated covariance between X, Y :

C̃ov t(X, Y) ≈ Et((X − µt−1)(Y − υt−1)) (6.19)

where Et(·) calculates the exponential weighted average at t. While the equation

we resolve is to calculate the covariance as

Cov t(X, Y) = Et((X − µt)(Y − υt)) (6.20)

(see Appendix B.1.3). For rapid changing frames with dynamic lighting, it is prefer-

able to have a direct calculation instead of prediction to get the CV coefficient.

Then, the coefficient matrix is AAAt = diag(
∑n

1 (e
T
i ΣΣΣtei)ei)

−1ΣΣΣt where ei is the ith

matrix basis, and diag(·) creates the diagonal matrix from a vector.

6.5.4 Coefficient Boundary

Since the numerical estimation might lead to instability (e.g., oscillating larger

or being NaN), we bound the range of CV coefficient for subsurface scattering with

two considerations:

1. Both diffuse, B, and distant scattering results are non-negative, the maximum

residual cannot be larger than the distant scattering result f̄ , thus Resmax ≤ f̄ .

2. Residual can be negative, however, we anticipate that the minimal residual can

be raised to non-negative by G(t) as Resmin + a0·ḡ ≥ 0 where a0 is a constant

110

mt

Estimation History Update

Sampling

Sample Count

Estimation

CV Coefficient

Estimation

Sample Count

History Update

CV Coefficient

History Update

Bt Lt

σ
2

0

Ht−1 Ht

JtJt−1

Bt

Algorithm 1

Algorithm 2

Algorithm 3

CV

Residual
a
∗

t

Figure 6.4: The online control variates based adaptive sampling diagram at frame
time t. With sample count history Ht−1 and CV history Jt−1, we estimate the
sample count required at time t based on the control variates residual, trying to
meet the target variance level σ2

0.

positive clamping coefficient. Thus, we have Resmin ≥ −a0·ḡ.

With Res = f̄ − a · ḡ we have the bound D ∈ [0, a0+f̄/ḡ]. If a variable a is clamped

by D, we denote it as a|D. Since Cov t(f̄ , ḡ) and Var t(ḡ) can be zero for hard

shadows. To deal with this issue, we added a small constant factor ǫa as

at =
Cov t(f̄ , ḡ) + ǫa
Var t(ḡ) + ǫa

. (6.21)

In this way, when both variables become zero, it could simplify to major part sepa-

ration (at = 1).

6.5.5 Online Joint Estimation Algorithm

With the ability to calculate covariance matrix online, the online algorithm to

estimate sample count mt as well as the optimal CV coefficient at is provided in this

section. Fig. 6.4 shows an overview of the online control variates based adaptive

111

sampling diagram. It composes of three major parts: i) Sample count estimation,

ii) CV coefficient estimation, and iii) Estimation history update.
Algorithm 3 Sample Count Estimation

Require: Ht−1, γ, ǫu, βmin, βmax

1: if γ < ǫu then

2: mt = 0
3: else

4: Update m̂t with Eq. 4.9
5: mt = m̂t|[βmin,βmax]

6: end if

7: return mt

Sample count estimation. As shown in Algorithm 3. if most contributions come

from direct scattering (Eq. 5.20), there is no need to perform distant scattering (Line

1-2). Otherwise, it will use the real-time adaptive sampling algorithm to estimate

sample count in frame t (Line 4). To have adequate observations and also consider

the computing capability, the estimated sample count is restricted within [βmin, βmax]

(Line 5).
Algorithm 4 CV Coefficient a∗t Estimation

Require: ΣΣΣt−1, ǫa, D
1: at−1 =

ΣΣΣt−1.xy+ǫa
ΣΣΣt−1.yy+ǫa

|D
2: return at−1

CV coefficient estimation. With the proposed exponential moving covariance

matrix, ΣΣΣt =
(

Var t(f̄) Cov t(f̄ ,ḡ)

Cov t(ḡ,f̄) Var t(ḡ)

)
. We can easily calculate the CV coefficient at t−1

as at−1 = (Σt−1.yx+ǫa)/(Σt−1.yy+ǫa) (Line 1 in Algorithm 4) and make it bounded

by D to deal with instability. At last, the coefficient solution is approximated by the

coefficient at t−1 as at−1 (Line 2). Note that if we use EWMA covariance estimator

(Eq. 6.18), the coefficient would be approximated by covariance estimator at t − 1

using history from t− 2. Another potential solution for CV coefficient estimation is

to calculate per-frame CV coefficient directly and use exponential moving average

112

(EMA) for a good estimation as Fig. 6.3(b). However, it cannot lead to Fig. 6.3(c)

to remove the temporal variance.
Algorithm 5 Estimation History Update

Require: Ht−1,mt,Jt−1 = (ΣΣΣt−1, ζn−1), a
∗
t , t

1: // Sample count history update
2: S(t) = Res(t)
3: Update Ht = (µt, σ

2
t , m̄t) based on Eq. 4.2–4.4

4: // CV coefficient history update
5: Zt = [f̄ , ḡ]
6: Update ΣΣΣtwith Eq. 6.17
7: ζt = (1− α)ζt−1 + αZt

8: Jt = (ΣΣΣt, ζt)
9: return (Ht,Jt)

Estimation history update. After sampling, we need to update the history

buffer for both sample estimation and VC coefficient estimation: 1) Sample count

estimation. After applying the control variates, the value we monitor is Res(t)

instead of Lo(t). Because Lo(t) contains both spatial and temporal variance, what

represents the spatial variance most is Res(t). So Res(t) is set as the shading result

for history update (Line 1). For storage efficiency, only luminance is used for Res(t).

2) CV coefficient estimation. The exponential moving covariance matrix and the

exponential moving average for f̄ and ḡ are updated between line 5-7. Note that the

exponential moving coefficient for CV can be different from adaptive sampling to

reduce the variance caused by a∗t estimation. There are two considerations during

implementation:

1. Number of textures. Line 8 indicates that we need to store 9 parameters, which

would require three textures of floatRGBA16. But ΣΣΣt is symmetric, and ΣΣΣt.xx

is not used. Thus only 7 parameters (two textures) are actually needed to keep

the history.

113

2. Sampling value. Since rendering solves Lo(p, t), to efficient compute the moni-

toring value S(pt) and Zt, we can derive another formulation without calculating

intermediate values as

f̄ = Lo(t)− (1− γ) · B(t), (6.22)

Res(t) = f̄ − a∗t ·G(t). (6.23)

Fig. 6.5(a)–(l) shows an example of applying the algorithm with EWMA co-

variance estimator and EMCM. The sample count and quality are close. However,

we have a slightly smaller sample count with EMCM. Moreover, the approximation

of EWMA brought higher variance and covariance changes shown between Fig. 6.5

(c) and (i), (b) and (h). Therefore, we select EMCM. Note that Eq. 6.23 uses

G(t) instead of ḡ (no matter whether the standard or constant control variable

is used) to remove temporal variance while still keeping spatial variance to avoid

under-sampling in both static and dynamic lighting scenarios (see Appendix B.4.3).

6.6 Offline CV Coefficient Estimation

From the online solution, we find an approximation, a∗t ≈ 1, leading to an even

more efficient implementation for real-time applications.

Fig. 6.5(d) shows that for most regions in time, even with time variant lighting

condition, a∗t remains 1. Fig. 6.5(m)–(r) show the corresponding states if we set

a∗t = 1. The quality is a little worse (.0031 > .0028) with a reduced average sample

114

O
n
li
n
e
w
/
E
M
C
M

(a) rmse = .0028 (b) Cov(f, g) (c) Var(g) (d) a∗
t

(e) m̄ = 21.5spp (f) Var(Res)

O
n
li
n
e
w
/
E
W

M
A

(g) rmse = .0028 (h) C̃ov(f, g) (i) Ṽar(g) (j) a∗
t

(k) m̄ = 21.8spp (l) Ṽar(Res)

O
ffl
in
e

(m) rmse = .0031 (n) Cov(f, g) (o) Var(g) (p) a∗
t
= 1 (q) m̄ = 18.5spp (r) Var(Res)

Figure 6.5: Sample count mt estimation with online and offline CV coefficients a∗t
estimation.

count (-3 spp), but we can save one texture and the corresponding calculation.

Our online solution requires two textures. When the memory capacity or

bandwidth budgets are tight, one more texture per pass might be too demanding.

6.7 Static Lighting

In the previous sections for control variates, we assume that the static scene

has all lighting constant, namely Var(T) = 0. It leads to a CV coefficient a = 1

based on Eq. 6.21. However, in a real-time rendering engine, static lighting might

still have dynamics due to sub-pixel jittering for temporal anti-aliasing [Yang et al.,

2020]. More specifically, the platform in our research (i.e., Unreal Engine 4) uses

8 temporal samples in sample space based on Halton sequence, as shown in Fig.

6.6b. If the sub-pixel has a high frequency like on the orange (Fig. 6.6a), there are

115

a

1

2

3

4

5

6

7

8 b

0 5 10 15 20 25 30
0.242

0.244

0.246

0.248

0.250

In
te

ns
ity

T1 = 8 T2 = 8 T3 = 8
c g f (ocv) 1024 spp (No TAA)

0 5 10 15 20 25 3010−7

10−6

10−5

EM
CM

 C
om

po
ne

nt
s

d cov(f,g) var(g)

15.8

16.0

16.2

16.4

16.6

16.8

CV
 C

oe
ffi

cie
nt

0 5 10 15 20 25 3010−5

10−4

10−3

10−2

Va
ria

nc
e

σ2
0

Sample Count = 64 (Overestimation)

Sample Count = 8

e

OCV Res CCV Res AS

Figure 6.6: Online control variates on the static scene in real-time rendering engine
leads to sample count over-estimation due to subpixel jittering. However, it leads
to an equivalent quality compared to fixed sampling with 64 spp.

still temporal periodic dynamics (the control variable g shown in Fig. 6.6c). These

periodic dynamics make the online CV coefficient find the traditional CV coefficient

to minimize the periodic dynamics, instead of making E [F − aG] → 0, thus creating

large CV coefficients shown in Fig. 6.6d when not clamped. This operation leads

to variance over-estimation shown in Fig. 6.6e, yet we can achieve an equivalent

quality when compared to 64 spp due to this over-estimation. To avoid this over-

estimation, we can increase ǫa to a larger value like 10−4 to mask this pixel jittering

(See Section 7.3). Please note that even with this over-estimation, it still runs faster

than the constant sampling rate of 64 spp. Although with this sub-pixel jittering,

the EMCM components for sub-pixel jittering are small. It is smaller than 10−6 in

the example shown in Fig. 6.6d. During dynamic lighting, this contribution can be

ignored. It has a similar performance to CCV (constant Control Variates) and runs

faster than AS (adaptive sampling), see Section 7.4. Refer to Appendix B.5 for the

temporal insights of more pixels.

116

6.8 Discussion and Limitation

Since the main purpose of control variates is to reduce the variance during

dynamic lighting conditions, the control variates does not reduce the variance when

the lighting is stable as how control variates is used generally in offline rendering.

The reason is that we use a constant control variable in each frame. It does not

reduce the variance. However, since it is dynamic according to time, it can be used

to minimize temporal variance.

To reduce variance during stable lighting, we need to find a control variable

that is not constant in a frame. For the application of subsurface scattering, we need

an efficient control variable that samples the texture or caches efficiently during the

correlated sampling with the function to integration. The complexity should be

O(1) instead of O(n), where n indicates the number of samples. Otherwise, it is not

suitable for real-time subsurface scattering. However, it is still viable with a constant

in-frame control variable for stable lighting in real-time rendering engines where

per-frame jittering has been applied. Because frame jittering introduces temporal

dynamics in real-time rendering when TAA is enabled, our algorithm can capture

this temporal information to derive the CV coefficient. However, it performs over-

estimation, yet leading to equivalent quality compared to fixed sample count of 64

spp with better performance.

117

Chapter 7: Implementation and Results

(a
)
D
ra
g
o
n

(1) PBRT Ref (I′r) (2) Ours (I′o) (3) 2·|I′r − I′o| (4) Zoom-in (Ref)(5) Zoom-in (Ours) (6) +Trans. (7) Sample Count

(b
)
H
ea

d
(c
)
B
u
d
d
h
a

Figure 7.1: Subsurface ground truth comparison (without transmission). (a) Stan-
ford Asian Dragon, (b) Infinite-Realities head, and (c) Stanford Happy Buddha at
1366×1024. In each row, we show (1) PBRT reference, (2) our scattering, and (3)
difference from PBRT. We also zoom into a high difference region for (4) PBRT and
(5) ours (6) with transmission. The (7) sample count from our one pass adaptive
sampling (white = 64 spp, black = 0 spp). For our algorithm, κ = 0.2, σ2

0 = 0.001,
[bmin, bmax] = [8, 64] spp.

7.1 Implementation

We implemented our subsurface scattering as a single screen-space adaptive

sampling post-processing pass in UE4, without modifying the final TAA pass. Fig.

5.8 summarizes the subsurface scattering pass. The scene color is broken into diffuse

irradiance and non-subsurface irradiance. Then we prefilter the diffuse irradiance

map to accelerate cache hits when incoherently sampling the irradiance. During

screen-space subsurface scattering, we use our importance approximation Eq. 5.6

118

to sample in the subsurface plane that is perpendicular to our view direction. The

number of samples is estimated in the variance guiding phase. Since we could have

different adjacent subsurfaces, we cache an 8-bit profile ID texture to resolve how

bleeding color between profiles is mixed. After sampling, the result is used to update

the history texture that stores Hi per pixel with α0 = 0.2 (the max weight for the

non-transparent object in UE4). Finally, the scattering result is combined with

surface albedo and the non-subsurface part to form the final output.

Bilateral filtering. We adopt depth-based bilateral filtering [Golubev, 2018] to

solve the bleeding problem between distinct scattering surfaces. We extended Eq.

5.2 as:

Lo =

∑n(i)

j=1 1s(qj) · r′qjR(r′qj)/pdf qj · Lqj∑n(i)

j=1 1s(qj) · r′qjR(r′qj)/pdf qj
(7.1)

where r′qj =
√
r2qj +∆D2

qj
, ∆Dqj is the depth difference between qj and the center

sampling point, and the indicator function 1s(qj) is 1 if there is subsurface and 0

otherwise at qj.

7.2 Static Scene

We include comparisons to evaluate the quality and speed of our adaptive

sampling algorithm. For quality, we compare root mean square error (RMSE) and

gray-scale peak signal-to-noise ratio (PSNR). For real-time performance, we com-

pare speed and quality to Burley’s method without the adaptive sampling, and to

the separable screen-space method that is the standard implementation in UE4.

We modified it to approximate Burley’s model instead of Dipole. Please refer to

119

Appendix A for more information about our approach and validation of this ap-

proximation. Unless otherwise specified, all performance numbers are measured on

NVIDIA Quadro P4000 with a resolution of 1366x1024. We measure time in ms for

just the subsurface work.

7.2.1 Quality Comparisons

We compare against PBRT ground truth in Fig. 7.1 for three scenes: Dragon,

Infinite-Realities head, and Happy Buddha. We compare our screen-space subsur-

face scattering (with no transmission) to the PBRT path integrator with Disney

material with maxdepth = 1. To focus on subsurface and minimize the difference

caused by different light and tone mapping implementations, only point lights are

used, with maximum shadow resolution in the UE4 rendering. Tone mapping is

not applied in either renderer for ground truth comparison. The results show that,

while some differences are visible, they remain qualitatively low. We hypothesize the

most significant differences are due to the PBRT renderings including transmission

paths, while diffusion models cannot. UE4 does include a separate translucent ob-

ject transmission model. To confirm this as the major source of observed errors, we

replaced the UE4 transmission profile with Burley’s model as shown in Fig. 7.1(6).

This produces a closer (though still not exact) match. We believe a better real-time

transmission model could further reduce the difference.

120

7.2.2 Adaptive Sampling Quality

For real-time timing evaluation, we compare our adaptive algorithm to a fixed

sample-count interactive implementation of the Burley model, and the UE4’s sepa-

rable screen-space diffusion model, tuning each for approximately equal quality as

compared to a 2K sample per pixel ground truth within UE4. Performance for the

sampling models is worst at a close viewing distance since the texture accesses are

least coherent then, with cache misses causing significant performance degradation.

Therefore, we evaluate the quality and performance of adaptive sampling at both a

normal viewing distance, and at a view close to the surface.

Regular distance. We compare a fixed 2K-sample rendering of the Buddha

model to our adaptive algorithm, with a max sample count of 64 and varying σ2
0

and κ. For timing, both the Buddha and checkerboard base plane use the subsurface

material, though the PSNR is only calculated for the Buddha pixels. Fig. 7.2 shows

the PSNR of the Buddha and the subsurface time. Our algorithm runs faster (1.97×)

with negligible quality difference (40.51-40.2=.31 dB) when local target quality is

σ2
0 = 0.0001 (PSNR=40.00 dB). Moreover, our algorithm can make use of TAA

to boost the performance with small quality degradation. For examples, when the

local target quality is σ2
0 = 0.001 (PSNR = 30.00dB), the final quality reaches 38.36

dB with a speedup by 2.12× in 2.07 ms. The last column of Fig. 7.1(c) shows the

sample count of the Buddha in this configuration.

Close distance. We use a forehead skin patch from Digital Mike model that

has high scattering distance in UV space to investigate this case. Fig. 7.3 shows the

121

0.0 0.2 0.4 0.6 0.8 1.0

40.00

33.01

30.00

23.01

20.00

L
o

c
a

l
ta

rg
e

t
q

u
a

lit
y
 i
n

 P
S

N
R

 (
d

B
)

33.68

32.11

34

32.27

34.09

32.42

34.09

32.46

37.97

34.11

32.43

38.04

34.2

32.49

40.15

39.32

38.32

40.11

39.26

38.36

40.18

39.2

38.17

40.2

39.17

38.17

40.05

39.1

40.07

39.09

33

34

35

36

37

38

39

40（32.64）

（31.68）

（30.49）

（26.93）

（25.93）

(a) PSNR for Buddha region

0.0 0.2 0.4 0.6 0.8 1.0

40.00

33.01

30.00

23.01

20.00

L
o

c
a

l
ta

rg
e

t
q

u
a

lit
y
 i
n

 P
S

N
R

 (
d

B
)

2.03

1.74

1.65

2.07

1.82

1.68

1.85

1.71

1.87

1.72

2.08

1.88

1.73

1.88

1.74

2.2

2.11

2.22

2.12

2.22

2.13

2.09

2.22

2.14

2.09

2.21

2.14

2.24

2.14

2.09

1.7

1.8

1.9

2

2.1

2.2

(b) Pass time (ms)

Figure 7.2: Varying PSNR and κ for the Buddha scene with bmax = 64 spp. Color
shows pass time in ms. PSNR numbers in parentheses are single-frame without
TAA. Fixed 64 spp runs in 4.38 ms with final PSNR= 40.51 (32.91) dB.

final PSNR and subsurface time. Especially, when local target quality is σ2
0 = 0.001

(PSNR = 30 dB), our algorithm adaptively reduced sample count to bmin = 8 spp

for all κ. We almost achieved equal quality when compared to fixed 64 spp (40.26

dB vs. 40.39 dB) with a speedup of 4.15× (from 7.51 ms to 1.81 ms). We expect

better performance for adaptive sampling in these cases vs. fixed sampling, since

adaptive sampling reduces the number of incoherent non-cached texture accesses.

With the sampling bandwidth bottleneck of close views, the 8-bit cached profile

ID texture is critical for performance. Though computed each frame, profile ID

texture generation is coherent, and it reduces the incoherent accesses from 16 bytes

per sample to one byte per sample. Without the texture, quality level 0.001 took

4.23 ms (6.13×) while fixed 64 spp took 25.94 ms. When compared to Separable, the

rendering time of this case is faster than our model, at 3.06 ms, but the separable

approximation shows significant banding artifacts in close views, resulting in a worse

PSNR = 39.95 dB. We show a better comparison of the artifacts to ours in Fig. 7.4.

122

Burley

Separable

(a) Close skin patch

0.0 0.2 0.4 0.6 0.8 1.0

40.00

30.00

P
S

N
R

 (
d

B
)

40.28

40.26

40.29

40.26 40.26 40.26

40.29

40.26

40.28

40.26

40.32 40.31

40.26

40.28

40.3

40.32(35.74)

(35.68)

(b) Final PSNR

0.0 0.2 0.4 0.6 0.8 1.0

40.00

30.00

P
S

N
R

 (
d

B
)

2.24

1.81

2.67

1.81 1.81 1.81 1.81 1.81

2.92 3.07 3.17 3.21

2

2.5

3

(c) Final PSNR

Figure 7.3: Varying PSNR and κ for the close skin patch with bmax = 64 spp. Color
shows pass time in ms. PSNR numbers in parentheses are single-frame without
TAA. Fixed 64 spp runs in 7.51 ms with final PSNR= 40.39 (36.02) dB.

(a) Separable (b) Ours

Figure 7.4: Quality comparison of high scattering marble material. Observable
vertical banding artifacts in (a) Separable.

123

7.2.3 Equal Quality Comparison

Fig. 7.5 compares a single frame Buddha scene quality between our adaptive

sampling algorithm and fixed sampling, given approximately the same execution

time. In the Buddha scene, we fixed bmin = 8, bmax = 64 with two different σ2
0, κ

settings that lead to the best quality (σ2
0 = 0.001, κ = 0.2, and σ2

0 = 0.0001, κ = 0.6).

The quality compared to 2K-spp ground-truth is better using our adaptive sampling

algorithm.

Fig. 5.1(a) and (c)/left compares quality on the Digital Mike model for equal

time comparison between our adaptive sampling algorithm and the fixed sampling

algorithm without pre-filtering and profile caching as a baseline. We also show

two other views with the same settings (middle and right). Fig. 5.1(d) shows the

separable screen-space filtering algorithm for the same views. Fig. 5.1(e) visualizes

the sample counts for our adaptive algorithm in each view. The result shows that

our algorithm targets best quality with a single setting that runs comparable or

even better than Separable.

7.2.4 Real-time Counterpart Comparison

We also implemented the state-of-art screenspace subsurface scattering by Gol-

ubev [2018] into our framework as a fixed 64-sample ground truth with the Burley

diffuse profile instead of our approximation. The result is shown in Fig. 5.1(b).

Based on the approximation comparison in Fig. 5.3, the bias should be small. Dif-

ferences between Burley’s model and our approximation are small in the ear (0.29

124

RMSE: 2.7e−2 RMSE: 1.6e−2 RMSE: 2.5e−2 RMSE: 1.4e−2

RMSE: 2.3e−2 RMSE: 1.2e−2 RMSE: 2.2e−2 RMSE: 0.9e−2

fixed / 2.08ms adap. / 2.08ms fixed / 2.20ms adap. / 2.21ms ground truth

Config: 26 spp σ2
0 = .001 28 spp σ2

0 = .0001 2k spp

Image PSNR: 36.61 dB 38.51 dB 37.14 dB 40.39 dB

Figure 7.5: Equal time comparison: fixed vs. adaptive.

dB) and front (0.26 dB) scenarios. However, those differences are relatively large

in the skin patch scenario (2.09 dB). Further inspection of the adaptive sampling

count in Fig. 5.1(e), shows that only 8 samples are used per pixel to meet the target

quality. Although there is a small quality degradation, our sampling algorithm is a

good mechanism to prevent oversampling when the quality is already met for real-

time rendering. Despite the minor quality drop, we have a significant performance

gain ranging from 2.3× to 4.3×.

Table 7.1: Adaptive vs fixed phase breakdown for Digital Mike in Fig. 5.1 (ms).
Scenario Setup Pre-filtering Sampling Update Combine Total
(L)+fixed 0.38 0.16 10.73 N/A 0.20 11.47
(L)+adt. 0.38 0.16 1.50 0.54 0.20 2.78
(C)+fixed 0.41 0.17 9.72 N/A 0.27 10.22
(C)+adt. 0.41 0.17 2.72 0.46 0.27 4.03
(R)+fixed 0.35 0.17 1.45 N/A 0.11 2.08
(R)+adt. 0.35 0.17 0.38 0.14 0.11 1.15

7.2.5 Performance Breakdown

To help understand the cost of the variance guiding phase, the update pass

in Fig. 5.8 is separated from the sample estimation and sampling process for time

125

measurement. We also compared fixed and adaptive 64 spp cost to illustrate how

techniques utilizing our method might perform on different hardware. The result is

presented in Table 7.1. The performance is measured as the median time (in ms)

for the left (L) close patch, center (C) ear, and right (R) front image in Fig. 5.1.

Table 7.2: The pass time (ms) and PSNR for rendering the scattering pass under
different sample configurations: fix the sample per pixel is fixed, adt. using our
single pass adaptive sampling, and SRatio the total sample ratio between adt and
fix. The reference image is fixed 2K spp. err1 is the RMSE of pixels that already
meet the target quality σ2

0 = 0.0001 with n̂ = bmin at bmax = 64spp, err2 the RMSE
of pixels that need n > bmin.

a) 64 spp b) 128 spp c) 512 spp
fix adt. fix adt. fix adt.

Dragon
time 2.29 2.10 4.1 3.14 14.77 8.6
PSNR 46.93 46.61 48.34 47.24 48.64 48.01
err1 .006 .006 .006 .006 .006 .006
err2 .004 .005 .004 .004 .004 .004
SRatio 78.66% 64.92% 36.70%

Head
time 1.33 0.82 1.99 0.93 6.44 1.62
PSNR 51.29 48.54 51.57 49.71 52.03 49.86
err1 .003 .003 .003 .002 .002 .002
err2 .005 .010 .005 .010 .004 .010
SRatio 16.00 % 9.54% 4.41%

Buddha
time 1.68 1.35 3.34 2.01 9.63 5.74
PSNR 41.04 40.75 43.90 43.59 48.85 47.98
err1 .006 .006 .005 .006 .003 .003
err2 .011 .011 .007 .007 .004 .004
SRatio 59.84% 54.29% 39.19%

7.2.6 Effect of Sample Budget on Time and Quality

We observe that adaptive 64 spp still differs from 2K sample ground truth for

high scattering material, marble. The local target quality is not met (Figure 7.2(a))

for σ2
0 > 0.001. Since the run-time is still low, we explore the effect of adding more

adaptive samples for all three test scenes in Figure 7.1 with σ2
0 = 0.0001, κ = 0.2.

The checkerboard is not subsurface. The result is shown in Table 7.2. For small

dmfp (Head) with high sample count sparsity, we could use only 4.41% of 512 spp to

126

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
log10(ReMSE)

0.70

0.75

0.80

0.85

0.90

0.95

1.00
Cu

m
ul

at
iv

e
Pr

ob
ab

ilit
y

(S
ub

su
rfa

ce
 P

as
s)

σ0 = 0.01

a

OCV,1e-4
OCV,1e-5
OCV,1e-6
CCV
AS
64 spp
1024 spp

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0
log10(ReMSE)

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y
(T

AA
 P

as
s)

σ0 = 0.01

b

OCV,1e-4
OCV,1e-5
OCV,1e-6
CCV
AS
64 spp
1024 spp

10 20 30 40 50 60
Sample Count

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

c

OCV,1e-4
OCV,1e-5
OCV,1e-6
CCV
AS

0.0 0.1 0.2 0.3 0.4
|I− IGT|

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

d

OCV,1e-4
OCV,1e-5
OCV,1e-6
CCV
AS
64 spp

0.000 0.025 0.050 0.075 0.100 0.125 0.150
|ITAA− IGT|

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

e

OCV,1e-4
OCV,1e-5
OCV,1e-6
CCV
AS
64 spp

0 10 20 30 40 50 60
CV Coeffs

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

f

OCV,1e-4
OCV,1e-5
OCV,1e-6
CCV

Figure 7.6: Adaptive sampling history and quality analysis for teaser in Fig. 7.7
with static lighting.

achieve 49.86 dB in 1.62ms. The PSNR is lower than fixed 64 spp because we have

set a target quality level, where most sparse regions will not increase the sample

count and remain as n̂ < bmin if the quality has already been met (the err2 of adt.

sampling for Head).

7.3 Control Variates on Static Scene

In this section, we analyze the quality with real-time control variates in static

scenes. In adaptive sampling, we try to achieve a target variance. Specifically, we

are interested in how adaptive sampling and CV affect the detailed quality. We use

the empirical cumulative distribution function (ECDF) to present the square root

of moving variance of the subsurface scattering pass within a frame for adaptive

sampling and the square root of the moving CV residual variance. The final image

127

quality is presented with absolute error in ECDF compared to the ground truth

with 1024 spp. This experiment fixed the coefficient boundary as a0 = 1000 and the

exponential coefficient acv = 0.005 for CV histories. Note that although we test in

static lighting, the jittering of sampling still creates temporal dynamics in real-time

rendering engines.

In the static scene, we find that our adaptive sampling with online CV pro-

vides equivalent quality compared to rendering with fixed sample count if TAA is

applied. Fig. 7.6(a) shows the empirical cumulative distribution function (ECDF)

of the square root of the exponential moving variance (ReMSE) in the subsurface

scattering pass for adaptive sampling (AS), constant CV (CCV), and Online CV

(OCV) with different CV coefficient estimation factor ǫa. σ0 is the target error for

real-time adaptive sampling control. For fixed sampling, it just monitors the ReMSE

without the loop to control the sample count. This figure shows that nearly all pix-

els have quality better than the target quality level. To show the corresponding

perceivable error, we use absolute luminance error. Fig. 7.6(d) shows the absolute

luminance error between the ground truth (IGT , 1024 spp with TAA) and the direct

subsurface scattering pass result without TAA (I). We could observe that OCV

with ǫa = 1 × 10−6 has an equivalent error distribution compared to 64 spp. After

the application of TAA, the error distribution has been reduced, as shown in Fig. 7.6

(b) compared to Fig. 7.6(a). We use EMV in the TAA pass to monitor the variance

with the TAA history weight instead of the constant weight used in our subsurface

scattering guiding pass (α = 0.2). Although this error is larger than the fixed 64

spp configuration, we have equivalent quality in pixel comparison as shown in Fig.

128

a. Teaser b. εa = 10−4 c. εa = 10−6

d. εa = 10−4 e. εa = 10−6 0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

CV
 C

oe
ffi

cie
nt

10

20

30

40

50

60

Sa
m

pl
e

Co
un

t (
sp

p)

Figure 7.7: CV Coefficient and sample count for Teaser in a static scene. Dynamic
lighting and fire transparency are disabled for subsurface scattering quality compar-
ison.

7.6(e) with ǫa = 10−6. The quality is also better than AS and CCV. The smaller the

constant ǫa, the closer the CV coefficient is to the ground truth while avoiding zero

dividings. The CV coefficient distribution is shown in Fig. 7.6(f). A direct view is

also presented in Fig. 7.7(b) and (c). It then leads to higher variance. The sample

count has been increased as shown in Fig. 7.6(c) to reduce the variance lower to the

target quality level. This increased sample count is also illustrated in the sample

map view in Fig. 7.7(e) compared to (d) with ǫa = 10−4.

7.4 Dynamic Scene

Table 7.3: The mean metrics across all frames and the max performance ratio for adaptive
sampling (AS), adaptive sampling with Online CV coefficient (+OCV), and with constant
CV coefficient (+CCV).

Sample Count (spp) Sampling Pass Time (ms) PSNR (dB)

AS +OCV +CCV Max
ratio AS +OCV +CCV Max

ratio AS +OCV +CCV Max
Ratio

Flash lighting 61.97 29.58 26.88 x2.75 1.47 0.80 0.75 x2.79 51.19 49.55 49.43 x0.94
Regular lighting 26.51 18.32 17.82 x4.00 3.39 2.55 2.58 x3.11 47.85 47.58 47.55 x1.01
Dynamic scene 22.01 14.70 14.13 x2.02 2.02 1.54 1.52 x1.98 50.62 49.11 49.11 x0.91

In dynamic scene, the target quality has σ2
0 = 0.0001, α = 0.2, acv = 10−6,

κ = 0.2, ǫu = 0.01 and ǫa = 10−6, the sample count is clamped between 8 and 64

spp. acv is the exponential moving coefficient for CV history update. We created

three scenes to capture typical dynamic lighting changes to show how our proposed

129

(a) Flashing lighting (gunshot/lightning) (b) Regular lighting (light on/off) (c) Dynamic scene (moving boids)

T
e
st

S
c
e
n
e

A
S

+
C
V

P
S
N
R

(d
B
)

S
am

p
li
n
g
P
as
s
T
im

e
(m

s)
S
am

p
le

C
ou

n
t
(s
p
p
)

50 100 150 200 250

4

8

16

32

64

50 100 150 200 250

0.5

1.0

1.5

2.0

50 100 150 200 250

40

60

80

50 100 150 200 250

4

8

16

32

64

Light on Light off

50 100 150 200 250

2.0

4.0

6.0

8.0

Light on Light off

AS + CCV AS + OCV AS

50 100 150 200 250

35

40

45

50

Light on Light off

50 100 150 200 250

1.0

2.0

3.0

50 100 150 200 250

4

8

16

32

64

50 100 150 200 250

44

46

48

50

52

54

Frame

Figure 7.8: Real-time CV performance and quality test at resolution 2560x1440 for
the three test scenes: (a) Flashing lighting with additional snapshots at frame 101
and 108, (b) Regular lighting at 71 and 251, and (c) Dynamic scene at 25 and 200.

algorithm works in whole scene subsurface scattering:

1. Flashing lighting. Flashing light is used to simulate gunshots or lightning on

human face, using a directional light with intensity I(t) = sin(2πft) + 1 with

f = 5 Hz .

2. Regular lighting. We simulate regular lighting changes with a light switching on

130

and off, and flickering candle lights. The directional light is turned on/off every

3 seconds.

3. Dynamic scene. Dynamic moving boids are added to the scene creating dynamic

shadowing when they move around a candle.

We choose to use three metrics for the evaluation.

1. Sample count (spp). The per-frame average samples per pixel. It is calculated

on subsurface regions only.

2. Sampling pass time (ms). The sampling pass time is only measured for the

MC sampling process. A 3rd-order median filter is applied to remove unstable

measurements.

3. PSNR (dB). The PSNR is measured on the luminance of the subsurface scattering

region. The ground truth image is captured with 1024 spp per frame.

To make the results reproducible, we use fixed random seed and UE4 Sequencer

to render a standard dynamic range (SDR) 60 frame-per-second (FPS) avi, with

sample count and PSNR measured per frame. To get the sampling pass time, the

built-in csv log is used during sequencer recording. The performance is measured

with a resolution of 2560× 1440p on an NVIDIA RTX 2080Ti.

Fig. 7.8 shows the performance and quality test results for the selected three

scenes over 300 frames. For each test scene, we show the scene, two captures to

demonstrate temporal dynamics, the sample count texture for adaptive sampling,

the texture with online CV, the sample count, sampling pass time, and PSNR.

131

Table 7.3 shows the corresponding average over time. Since it is very important

to always maintain high performance in real-time rendering, the max performance

ratios before and after adding CV are also shown.

Max performance ratio. Fig. 7.8(b) shows a good example when light is switch-

ing on/off. Without control variates, the sampling pass time increases up to 3.11×

at frame 252 (7.15 ms vs. 2.33 ms) compared to with-CV even when quality is not

increased. With CV, the pass time is more stable and friendly to real-time appli-

cations. Note that, in the sampling pass time of Fig. 7.8, some sudden increase in

pass time can be observed. We believe it is due to memory incoherence since the

samples are based on importance sampling.

Sample count reduction. The reason we can have better performance is that CV

leads to lower sample counts, thus less pass rendering time. During continuously

frequent dynamic lighting change (Fig. 7.8(a)), temporal variance leads to high

sample counts (61.97 spp) and an average of 1.47 ms for the sampling pass. CV

leads to consistently lower average sample count (17.82 spp) and pass time (0.75

ms) with quality drops of 1.76 dB.

Quality effects. We observe a slight quality drop after applying CV. the qual-

ity drops the highest during high dynamic scenes (Fig. 7.8(c)) with fast moving

subsurface objects, down 0.91× when compared with adaptive sampling alone at

frame 25. However, we think the absolute PSNR is high enough for the introduced

performance.

Online vs. constant CV. The average quality is expected to be better with

online CV. We tend to have more samples during our 1D illustration example in

132

Fig. 6.5 as the algorithm tends to perform oversampling. In Fig. 7.8, a similar small

increase in sample count is detected during our 3D scene tests. The constant CV

seems to be more efficient regarding the memory usage of the online CV in real-time

rendering.

7.5 Cache Analysis

Our adaptive sampling algorithm helps to reduce the bandwidth demands.

However, it is still unknown how much cache access has been reduced without cy-

cle level simulation and how the algorithm affects the cache hit rate on different

cache levels. To answer these questions, we use GPGPU-Sim to provide a detailed

simulation of the contemporary GPU from a close view.

7.5.1 GPGPU-Sim

(a) Sampling result without combine

Mip0 Mip1 Mip2 Mip3 Mip4 Mip5
0

0.5

1

1.5

2

2.5

3

G
P

U
 S

im
u

la
ti
o

n
 C

y
c
le

s

10 7

Fixed Sampling

Adaptive Sampling

(b) GPU simulation cycles

Figure 7.9: The cycle level performance for (a) the sampling pass under (b) fixed
and adaptive sampling schema. Due to adaptive sampling, the simulation cycles are
reduced by 3.9 × (Mip0), 3.1×(Mip1), 2.3×(Mip2), 2.1× (Mip3), 2.1×(Mip4), and
2.1×(Mip5).

133

GPGPU-Sim 3.x [Khairy et al., 2020, Bakhoda et al., 2009] is a general frame-

work for performing cycle-level analysis of parallel computing code that primarily

supports CUDA (Compute Unified Device Architecture). CUDA is designed by

NVIDIA and is a parallel computing platform and programming model that uses a

GPU for general-purpose computing. The corresponding coding language is simi-

lar to C/C++, and different shading languages like High-Level Shading Language

(HLSL) used to implement real-time rendering passes. This platform enables us to

perform analysis once the subsurface scattering code has been manually ported to

CUDA.

Specifically for a given task (Fig. 7.9(a)) in a frame, we first capture all frame

buffers with RenderDoc. Then all buffers required for sampling are exported for

a CUDA version of the subsurface scattering to import for the simulation. Since

the MIP level is not supported in GPGPU-Sim, only adaptive sampling is analyzed

without the filtered importance sampling part of AFIS. The GPGPU-Sim is config-

ured to use NVIDIA TITAN X Pascal. The scattering result is stored in the data

cache not to affect the texture access analysis.

7.5.2 Adaptive vs. Fixed Sampling Simulation

Fig. 7.9(a) shows the selected rendering task. We perform the detailed cycle

level analysis through GPGPU-Sim. Fig. 7.9(b) shows the detailed GPU simulation

cycles required to sample the irradiance texture for subsurface scattering in a single

frame under different MIP levels for both fixed and adaptive sampling. We further

134

Mip0 Mip1 Mip2 Mip3 Mip4 Mip5
0

5

10

15

L
1

 T
e

x
tu

re
 C

a
c
h

e
 R

e
a

d
 A

c
c
e

s
s

10 7

Fixed Sampling

Adaptive Sampling

(a) Total L1 Cache Read Demand

Mip0 Mip1 Mip2 Mip3 Mip4 Mip5
0

0.5

1

1.5

2

2.5

3

3.5

L
2

 T
e

x
tu

re
 C

a
c
h

e
 R

e
a

d
 A

c
c
e

s
s

10 8

Fixed Sampling

Adaptive Sampling

(b) Total L2 Cache Read Demand

Figure 7.10: Total L1 and L2 cache read demand for near field rendering in a single
frame with fixed and adaptive sampling when the irradiance texture is sampled at
different MIP levels. With adaptive sampling L1 cache read is reduced by 5×, L2
cache read by 7× to 4×.

demonstrate the cache access demand and the cache hit rate to understand why

adaptive sampling uses fewer cycles.

As expected, the total cache read in L1 and L2 for adaptive sampling is much

less than fixed sampling (Fig. 7.10). However, what is interesting is the L1 and L2

cache miss rate shown in Fig. 7.11. L1 cache is highly incoherent and up to 62.78%

for fixed and 49.38% for adaptive sampling. This high cache miss rate reflects the

incoherent cache access pattern. Since adaptive sampling has a lower sample count

demand, it tends to cause fewer conflicts, thus has a better cache hit rate in L1

cache.

Interestingly at Mip 0, although adaptive sampling has much less total texture

read access demand (48,733,014 vs. 363,015,023) at L2 cache, the L2 texture cache

read miss count is slightly higher than fixed sampling (151,356 vs. 91,541). This

leads to a higher cache read miss in Fig. 7.11(b).

135

Mip0 Mip1 Mip2 Mip3 Mip4 Mip5
0

10

20

30

40

50

60

L
1

 T
e

x
tu

re
 C

a
c
h

e
 R

e
a

d
 M

is
s
 R

a
te

(%
)

Fixed Sampling

Adaptive Sampling

(a) L1 Cache Read Miss

Mip0 Mip1 Mip2 Mip3 Mip4 Mip5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

L
2

 T
e

x
tu

re
 C

a
c
h

e
 R

e
a

d
 M

is
s
 R

a
te

(%
)

Fixed Sampling

Adaptive Sampling

(b) Total L2 Cache Read Miss

Figure 7.11: L1 and L2 cache read miss rate (%) for near field rendering in a single
frame with fixed and adaptive sampling when the irradiance texture is sampled at
different MIP levels.

With this detail, we find that if we can have an alternative algorithm to solve

a problem that requires much less bandwidth demand, the performance can be

increased even when the cache hit rate is reduced at a certain cache level, like the

L2 cache in Fig. 7.11(b).

136

Chapter 8: Conclusion

Photo-realistic subsurface scattering is an appealing feature in real-time appli-

cations like games. However, subsurface scattering based on Monte-Carlo sampling

is expensive in real-time rendering because of the incoherent cache access in the

contemporary GPU cache architecture and the high bandwidth demands within a

frame time of several milliseconds or sub-millisecond. In this dissertation, we pro-

posed a taxonomy of heterogeneous real-time rendering techniques in terms of cache

and bandwidth cost minimization at the algorithm level. The mathematically sound

adaptive sampling acceleration technique is designed to minimize the sample count

and memory demands. To further reduce the computing demands for scalability, a

hybrid combination of our adaptive sampling and the separable technique is pro-

posed to achieve high frame-rate subsurface scattering with high quality (Chapter

1).

Chapter 2 briefly reviews Monte Carlo integration, subsurface scattering mod-

els, and the acceleration techniques used in the literature and industrial. Chapter

3 introduced the taxonomy of heterogeneous real-time rendering to evaluate cache

and bandwidth cost to improve the performance and detailed what techniques have

been proposed in the framework. Meanwhile, the cost is described by a mathe-

137

matical description. For subsurface scattering, we have characterized our algorithm

novelty within the taxonomy. Namely, we 1) reduce the computing demands with

hybrid acceleration techniques (AFIS and Separable), 2) propose adaptive sampling

local guiding to support different temporal reuse passes (e.g., TAA and DLSS) to

minimize sample count, and 3) propose adaptive filtered importance sampling to

increase the memory access efficiency, thus reducing bandwidth demands.

Chapter 4 presents a single-pass adaptive sampling algorithm, single-pass vari-

ance guiding (SPVG), that guides the MC sampling of subsurface scattering in a

local pass to enable real-time performance even with incoherent resource access in uv

space. Moreover, the guiding algorithm decouples from the final temporal accumu-

lation pass, enabling different temporal accumulation algorithms. We demonstrate

that both TAA and DLSS are capable of performing this task. We believe this algo-

rithm is general to be applied to other rendering passes and can be used for offline

rendering to guide sample distribution.

Chapter 5 details the application of adaptive sampling for subsurface scat-

tering and further optimizations. A simplified importance sampling function for

Burley’s Diffuse Reflectance Profile is provided, suitable for online sample genera-

tion. We have also combined adaptive sampling with filtered importance sampling

to reduce the memory demands further. The direct scattering variance has been

removed from the variance monitoring to make adaptive sampling more efficient.

Since high-resolution gaming is also crucial for the next generation game, we have

proposed a hybrid subsurface scattering framework to enable content-importance

based rendering of subsurface scattering.

138

Chapter 6 proposes a real-time control variates algorithm to reduce sample

count demands in real-time adaptive sampling in dynamic lighting and scenes. It

minimizes both regions and sample demands to perform stable subsurface scattering

with a unified representation. The CV coefficient is based on our novel exponential

moving covariance matrix, which should help in all research and application domains

that rely on an accurate online exponential moving covariance matrix. A bandwidth-

friendly CV coefficient approximation is also provided for real-time rendering engine

integration.

Chapter 7 provides the implementation and additional results. Apart from

rendering quality and time, cycle level analysis is also performed to show the actual

cycles saved and the effect on cache miss of adaptive sampling.

8.1 Future Works

In the future, we can explore deep learning methods for global subsurface

scattering quality improvement other than the standard DLSS that we have already

demonstrated. We can also perform multiple importance sampling to sample both

profile and lighting for subsurface scattering. This could potentially further reduce

the variance. Moreover, we can explore more complex in-frame standard control

variates with low memory demand instead of the in-frame constant control variates.

Since the adaptive sampling technique is generic, we can explore the appli-

cation of the adaptive sampling technique to other rendering passes (e.g., PCSS,

glossy, ambient occlusion), and even path tracing.

139

To explore further heterogeneity. One potential method is to extend the level

of details for memory demands to bit representation. For example, pixels newly

dis-occluded tend to require much over-sampling in the real-time adaptive sampling

framework. We can use textures in low bit representation to deal with the bandwidth

demand increase. After the code start, we can switch back to the standard level of

details with high bit representation. Moreover, we might use this work as a GPU

performance test case where an adaptive sampling algorithm is used.

Furthermore, there is a need to study the under-estimation in Real-time Adap-

tive Sampling. Given a target quality, we expect the sample count for each pixel

should be large enough to raise the variance higher than the quality level. However,

an under-estimation of sample count could happen in real-time adaptive sampling,

leading to the perceivable noise part visible to the human eye. Throughout the

experiment, two potential sources of under-estimation are found during the infor-

mal study: 1) parameter constraints and 2) sample count filtering. The first cause

happens before sample count estimation during the history update process. A good

example is the residual lower bound limit Resmin ≤ −a0 · ḡ for the CV coefficient

boundary estimation. When a0 is small, like 1, it can lead to variance under-

estimation. Suppose the random sequence has a short period, e.g., based on local

hash during dynamic lighting. A visible boundary would be perceivable between

scattering and shadowed regions. The second case happens after the sample count

map generation. Because the sample count map is not temporally constant, a com-

mon thought is to apply a spatial filter to make it more stable. We find that if a

3x3 median filter is applied, the sample count can be under-estimated, leading to

140

visible noise. This noise is visible during static scenes. Another research direction

is to answer whether adding a sample count filter helps to improve the efficiency.

In the implementation, we have used an 8-bit subsurface profile ID. It can

only support 256 different profiles. A naive solution is just to increase the bits used.

However, if we still want the current acceleration, we might need a clustering system

to cluster profile IDs when there are more than 256 profiles.

8.2 Contributions

This dissertation makes the following contributions:

1. Propose a real-time adaptive sampling algorithm in a single pass with time

and space complexity of O(1).

2. Provide the idea of local guiding that can use different global temporal reuse

algorithms (e.g., TAA and DLSS) to improve the rendering quality. Al-

though we do not have a contribution to create a new deep learning algorithm

for the temporal accumulation, we demonstrate the high potential of using

deep learning neural network for this task through a pre-existing deep learn-

ing technique DLSS designed for generic super sampling with the capability

of temporal accumulation. It has higher quality than TAA under different

lighting intensities.

3. Propose adaptive filtered importance sampling that further improves the ren-

dering speed of the filtered importance sampling with little overhead. For

subsurface scattering, adding the adaptive sampling part alone is shown to

141

provide additional 2× to 6× acceleration in addition to existing acceleration

techniques.

4. We have also improved our proposed adaptive method under the dynamic

changing environment with online control variates updating algorithm. The

major enabler is the proposed exponential moving covariance matrix.

5. Introduce an importance-guided acceleration framework that allows all users to

change different acceleration techniques (Separable and AFIS) by their game

logic.

6. Fit a separable approximation to on Burley’s normalized profile.

7. Accelerate the radius sampling with a well-fitted approximationto the inverse

CDF.

8. Provide a taxonomy in terms of cache and bandwidth for heterogeneous real-

time rendering. This dissertation has contributed to all sub-categories. We

deal with the cache incoherence crisis of Monte Carlo sampling to enable high

performance across current and next-gen commercial off-the-shelf GPU plat-

forms. For bandwidth-limited tasks, if we can have an alternative algorithm to

solve a problem that requires much less bandwidth demand, the performance

can be increased even when the cache hit rate reduces.

9. Focus on and explore temporal sequence information per pixel to advance

photo-realistic real-time rendering further. This dissertation provides a taxo-

nomic and mathematical way of thinking to improve the quality and perfor-

142

mance given limited bandwidth and cache. It might bring up more possible

research opportunities in real-time rendering from temporal sequence informa-

tion.

143

Appendix A: Separable Approximation to Burley’s Model

To make sure that the separable filter implementation is valid and can be com-

pared to our method, we provide our fitting from Gaussian kernel parameterization

[Jimenez et al., 2015] to Burley based on non-linear least squares fitting, and also a

comparison between these different techniques. Having a separable fit to the Burley

model eases rendering upgrades where the separable model is already deployed, but

also provides insight into how existing Gaussian kernel parameters interact with

Burley’s.

Note that this fitting is to make the separable and Burley models appear as

similar as possible visually. This process itself is not physically meaningful. The

original separable kernel is an approximation of the dipole model, which is already

an approximation of the actual profile. We are trying to fit it to Burley’s profile,

which is a direct approximation of the actual profile.

A.1 Fitting

The fitting problem is to find the best parameter fitting between the Burley

RB(r, θB) and separable RS(r, θS) diffuse profile, where θB = {A, ℓ}, and θS =

{falloff} (Note that both model has already included the r term inside for the

144

(a) By Difference (S∆). (b) By Ratio (SR). (c) By Derivative (SD).

Figure A.1: Diffuse profile fitting result with three different methods.

fitting).To achieve this, we explore three error functions:

1. Difference. The direct difference between the Burley and separable curves.

The minimization error function is

S∆ =
∑

(RB(r, θB)−RS(r, θS))
2 (A.1)

2. Ratio. The ratio between the Burley and separable curves should be close to

one. The minimization error function is

SR =
∑

(RB(r, θB)/RS(r, θS)− 1)2 (A.2)

3. Derivative. The first derivative of both curves in terms of r should have high

similarity. The minimization error function is

SD =
∑

(R′
B(r, θB)−R′

S(r, θS))
2 (A.3)

We observed that S∆ is the best error function for non-linear least squares

145

Figure A.2: The fitting from falloff color to Albedo (A) and DMFP (ℓ) with S∆.

(a) Albedo. (b) DMFP

Figure A.3: Fitting details in matlab.

fitting visually. Fig. A.1 shows an example of the result with falloff = 0.8 for

different error functions. Fig. A.2 shows the corresponding mapping between θB

and θS. The corresponding fitting performed in matlab is illustrated in Figure

A.3. Fig. A.2 clearly shows the range of values that can be expressed by the default

separable parameterization and Burley’s. To have the fitting on the fly in an engine,

a LUT or a linear fitting function can be deployed.

146

(a) Red channel. (b) Green channel. (c) Blue channel.

Figure A.4: Diffuse profile fitting for the default Separable configuration in UE4.

A.2 Validation

We created a beam light scene where a 1 cm radius circle surface receives

10 flux. The subsurface profile configuration is based on the fitting shown in Fig.

A.4. Subsurface color for the separable model [Jimenez et al., 2015] is set to 1.

Non-subsurface processes like tone mapping, bloom, eye adaptation, specular, and

auto exposure are turned off. The result is shown in Fig. A.5. We compared the

separable and Burley model in different configurations and with different diffuse

mean free paths (ℓ). Due to the low sampling count, the separable and Burley

models have different artifacts when ℓ increases. The separable model has banding

artifacts while Burley has energy loss due to TAA clamping. We believe better

clamping in TAA could further reduce the energy loss.

147

1cm 2cm 5cm 10cm 20cm

b) Separable
[Jimenez et al., 2015]

c) Burley +
Separable filter

d) Fixed, 1024spp
[Golubev, 2018]

g) Adt. 64spp
Ours

f) Adt. 64spp
[Golubev, 2018]

a) No Subsurface

dmfp

e) Adt. 64spp
(No clamping)
[Golubev, 2018]

Figure A.5: Subsurface test for the beam light scene with a 1 cm circle receiving 10
flux. a) No subsurface. b) Separable [Jimenez et al., 2015]. c) Burley profile fit with
a separable filter. d) Burley with fixed 1024 spp. e) Burley with adaptive 64 spp
+ no history clamping. f) Burley with adaptive 64 spp. g) Burley with adaptive
64 spp using our approximation. Halley’s method introduced in [Golubev, 2018] is
used in d)-f) for sampling. TAA is on for all tests.

148

Appendix B: Control Variates

B.1 Exponential moving covariance

To assure that the exponential moving covariance matrix is correct, we first

prove the basic building block that exponential moving covariance is correct.

B.1.1 Variable-weight covariance

The derivation is based on [Finch, 2009]. For exponential moving average and

variance, please refer to the original paper. Denote n observations x1, ..., xn and

y1, ..., yn from two random variable x, y. The weighted means for x and y are:

µn =

∑n
i=1wn,ixi∑n
i=1wn,i

, υn =

∑n
i=1wn,iyi∑n
i=1wn,i

(B.1)

where the weights sum as

Wn =
n∑

i=1

wn,i. (B.2)

149

To keep

Wnµn − wn,nxn = (Wn − wn,n)µn−1, (B.3)

Wnυn − wn,nyn = (Wn − wn,n)υn−1 (B.4)

we have the following constraint between Wn and Wn−1:

wn,j∑n−1
i=1 wn,i

=
wn−1,j∑n−1
i=1 wn−1,i

, 1 ≤ j ≤ n− 1. (B.5)

Then we can derive from the covariance between x and y

Covn(x, y) =En((x− µn)(y − υn))

=
1

Wn

n∑

i=1

wn,i(xi − µn)(yi − υn)

with fn(x, y) = (x− µn)(y − υn) and Eq. B.5 that

WnEn(fn−1(x, y)) =
n∑

i=1

wn,ifn−1(xi, yi) (B.6)

= wn,nfn−1(xn, yn)+(Wn − wn,n)

∑n−1
i=1 wn−1,ifn−1(xi, yi)

Wn−1

(B.7)

= wn,nfn−1(xn, yn)+(Wn − wn,n)En−1(fn−1(x, y)). (B.8)

150

With Sn = WnCov(x, y) we can have:

Sn =WnEn([x− µn][y − υn]) (B.9)

=WnEn(([x− µn−1]− [µn − µn−1])([y − υn−1]− [υn − υn−1])) (B.10)

=WnEn([x− µn−1][y − υn−1]) +WnEn([µn − µn−1][υn − υn−1])

−WnEn([µn − µn−1][y − υn−1])−WnEn([x− µn−1][υn − υn−1]) (B.11)

where the 3rd and 4th term can be simplified as

WnEn([µn − µn−1][y − υn−1]) = Wn[µn − µn−1][υn − υn−1] (B.12)

WnEn([x− µn−1][υn − υn−1]) = Wn[µn − µn−1][υn − υn−1]. (B.13)

The first term can be simplified with Eq. B.8 as

WnEn([x−µn−1][y − υn−1]) = (B.14)

=wn,n[xn − µn−1][yn − υn−1] +
Wn − wn,n

Wn−1

Sn−1 (B.15)

=
W 2

n

wn,n

[µn − µn−1][υn − υn−1] +
Wn − wn,n

Wn−1

Sn−1 (B.16)

After summing up the four terms, it leads to

Sn =
Wn − wn,n

Wn−1

Sn−1 + wn,n(yn − υn)(xn − µn−1). (B.17)

Then, the variable-weight covariance has Covn(x, y) = Sn/Wn

151

B.1.2 Exponential moving covariance

In exponential moving average, we have the general form

µn = (1− α)nx0 +
n∑

i=1

(1− α)n−iαxi. (B.18)

Therefore, we have wn,i = (1 − α)n−iα, 1 ≤ i ≤ n, wn,n = α and Wn = Wn−1 = 1.

Then, we have

Sn =
Wn − wn,n

Wn−1

(Sn−1 +
Wn−1wn,n

Wn − wn,n

(yn − υn)(xn − µn−1))

=(Wn − wn,n)(Sn−1 + wn,n(yn − υn−1)(xn − µn−1)). (B.19)

Since we have

Covn(x, y) =
Sn

Wn

= Sn, (B.20)

the final simplified exponential moving covariance is

Covn(x, y) = (1− α)Covn−1(x, y) + α(1− α)(xn − µn−1)(yn − υn−1). (B.21)

When n = 0, we have Covn(x, y) = 0.

152

B.1.3 EWMA covariance estimator

Note that Eq. B.15 leads to the EWMA covariance estimator as

C̃ovn(x, y) = (1− α)C̃ovn−1(x, y) + α(xn − µn−1)(yn − υn−1) (B.22)

where the prediction is done with

C̃ovn(x, y) ≈ WnEn((x− µn−1)(y − υn−1)) (B.23)

while ignoring the contribution of all other three terms in Eq. B.11. The formula

we derived Eq.B.21 is exactly

Covn(x, y) = WnEn((x− µn)(y − υn)) (B.24)

B.2 Covariance of Two Batch Means

Let n pair of random variables Xi,Yj sampled from two different distribution

correlated only when i = j. And X̄ = 1
n

∑
Xi, and Ȳ = 1

n

∑
Yj. Then:

Cov(X̄, Ȳ) = Cov(
1

n

∑
Xi,

1

n

∑
Yj) (B.25)

=
1

n2

∑

i

∑

j

Cov(Xi, Yj) (B.26)

153

Since Xi, Yj are correlated only when i = j,

Cov(X̄, Ȳ) =
1

n❆2
·❩nCov(X, Y) (B.27)

B.3 CV Coefficient and Residual Function Selection

In this section we provide an example of how we arrived at the CV coefficient,

the updating function, and the residual function for variance tracking if CV requires

Monte Carlo sampling. Note that the major purpose of having a variance estimation

is for real-time adaptive sampling. The temporal variance should have minimal

impact on it. Otherwise, the sample count will be greatly increased. Since it’s real-

time rendering, we also cannot afford a lot of textures to store history information

to approximate best coefficient.

B.3.1 Scenario Setup

We have a spatial-temporal variant function to integrate f(y, t) = h(t) ·1/(1+

y), with the control variable as g(y, t) = h(t) · (1 − y), D ∈ [0, 1]. Then G(t) =

∫
D
g(y, t)dy = 0.5 · h(t). For simplicity, 100 frame times are performed and a fixed

number of samples 16 spp are used for the correlated Monte Carlo sampling of f and

g to get the estimation f̄(t) and ḡ(t). The sample count is fixed to help understand

how our method helps to mitigate temporal variance. We have the following five

configurations for the residual and CV coefficient estimation.

1. Res t,f̄ . No CV is applied. The CV coefficient is 0. Therefore Res t,f̄ = f̄(x).

154

This configuration demonstrates the impact of temporal variance.

2. Res t,SF . We estimate the CV with single frame covariance between f and g.

Then it is used as the CV coefficient at−1,SF for the next frame to calculate

the residual as Res(t) = f̄(x)-at−1,SF · ḡ(x).

3. Res t,SF+EMA. After estimating at−1,SF , exponential moving average is used to

get a better estimation of the coefficient over time. Then at−1,SF+EMA are used

to estimate the residual.

4. Res t,EMCM . The covariance matrix ΣΣΣt between f̄(x) and ḡ(x) is updated with

EMCM over time with a weighting factor αcov = 0.05. Then the CV coefficient

is at−1,EMCM based on ΣΣΣt−1.

5. R̂es t,EMCM . The CV coefficient is the same as at−1,EMCM . However, the residual

is calculated as R̂es t,EMCM = f̄(x)− at−1,EMCMG(x). The reason we use G(x)

instead of ḡ(y) is that CV are used to deal with temporal variance, but should

not affect the variance estimation of spatial variance for adaptive sampling

(please see the result section for a better understanding).

With this configuration, we monitor the exponential moving variance on the

residual with αres = 0.2. In the meanwhile, we also have the ground truth configura-

tion Resgt, which is to apply the optimal CV coefficient. The coefficient is estimated

beforehand with large sample counts as ground truth.

We use two temporal function, f1(y, t) with h1(t) = 1 and f2(y, t) with h2(t) =

1 + 3 ∗ sin(t
10
) to simulate both static and dynamic scenarios.

155

0 0.2 0.4 0.6 0.8 1

y

0

0.2

0.4

0.6

0.8

1

(a) f and g

0 20 40 60 80 100

Time (t)

0

0.2

0.4

0.6

0.8

(b) Static

0 20 40 60 80 100

Time (t)

-2

-1

0

1

2

3

(c) Dynamic

20 40 60 80 100

Time (t)

0

0.2

0.4

0.6

C
V

 c
o

e
ff

ic
ie

n
t

(d) h1 CV coefficient

0 20 40 60 80 100

Time (t)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
e

s
id

u
a

l

(e) h1 Residual

0 20 40 60 80 100

Time (t)

0

0.05

0.1

0.15

0.2

0.25

R
e

M
S

E

(f) h1 Error

20 40 60 80 100

Time (t)

0

0.5

1

1.5

2

C
V

 c
o

e
ff

ic
ie

n
t

(g) h2 CV coefficient

0 20 40 60 80 100

Time (t)

-3

-2

-1

0

1

2

3

R
e

s
id

u
a

l

(h) h2 Residual

0 20 40 60 80 100

Time (t)

0

0.2

0.4

0.6

0.8

1

R
e

M
S

E

(i) h2 Error

Figure B.1: The CV coefficient and variance under different configuration with 16
samples per frame time.

Table B.1: The ReMSE of five configurations and the groud truth ResGT . R̂est,EMCM

is the best choice based on our selection criteria: 1) similar ReMSE to Res t,f̄ in static
scene, 2)mitigating temporal variance in dynamic scene, yet the ReMSE is no less

than the static scene counterpart of R̂es t,EMCM or Res t,f̄ .
Rest,f̄ Rest,SF Rest,SF+EMA Rest,EMCM R̂est,EMCM ResGT

Static (h = h1) 0.0325 0.0160 0.0058 0.0070 0.0324 0.0055
Dynamic (h = h2) 0.5585 0.3797 0.3742 0.1295 0.0732 0.1243

B.3.2 Result

Static scenarios . Fig. B.1(a) shows the spatial function of f and g when h = h1.

Fig. B.1(b) shows the corresponding MC sampling result at each frame time. Fig.

156

B.1(d) shows the estimated optimal coefficient for different configurations. The

optimal coefficient based on a MC sampling of 100k samples has a∗ ≈ 0.477. Fig.

B.1(e) shows the corresponding residual after applying CV. Fig. B.1(f) shows the

root exponential mean square error (ReMSE), which is applying a root operation

on the exponential moving variance. Although it is straight forward that CV can

reduce the variance estimation, however, please note that the reason we apply CV is

to remove temporal dimension variance, it should not significantly affect the spatial

variance estimation, otherwise, we could under estimate the number of samples in

static scenes. Since our application is in sample domain instead of shading domain,

by utilizing a good configuration like Res t,SF+EMA or Res t,EMCM will lead to under

sampling in shading domain as the constant term a · G(x) is not added in shading

domain. Because of this, R̂es t,EMCM is the best choice as it has almost the same

ReMSE as Res t,f̄ , which is not applying CV. Table B.1 shows the average ReMSE

of frame from 25 to 100 (to not count cold start).

Dynamic scenarios . With h = h2, the problem is different as temporal variance is

introduced. Fig. B.1(c) shows the corresponding MC sampling result at each frame

time. We want to minimize the temporal variance. The CV coefficient should be

derived from the covariance matrix of temporal domain t instead of spatial domain

y as Cov(f̄2(x), ḡ2(x)). With 1024 samples per frame, we estimate the optimal CV

coefficient a∗ ≈ 1.388. Fig. B.1(g) shows the run-time estimation of the coefficient.

Fig. B.1(h) shows the residual of all configurations. Fig. B.1(i) shows the ReMSE.

Here we could observe that the spatial coefficient at−1,SF and at−1,SF+EMA can reduce

the variance but not the temporal variance. With Res t,EMCM and R̂est,EMCM , most

157

of the temporal variance has been removed. Table B.1 shows the mean ReMSE. It

looks like both are viable for our adaptive sampling purpose. However, Res t,EMCM

causes under sampling during static scene. Therefore, the configuration that is

suitable for our use is R̂es t,EMCM .

In a summary, the CV coefficient is updated with the EMCM. In side the

residual function, G(x) instead of ḡ(y) is selected to allow CV deal with temporal

variance, but do not significantly affect the estimation of spatial variance for adaptive

sampling.

B.4 Theoretical Foundation

In this section, we provide the theoretical foundation for:

1. why the control variates updating function works based on EMCM.

2. the relationship among CV coefficient, the expectation and variance of CV

residual under different lighting condition.

3. time-variant CV coefficient with in-frame constant control variable.

B.4.1 Updating Function

Generally, if we have three random variables T , F , and G, where E [TG] is a

known constant. Then the unbiased Monte Carlo estimator for TF

〈TF 〉 = aE [TG] + 〈TF − a · TG〉 (B.28)

158

has the minimal variance based on the control variates concept where the optimal

control variates coefficient is

a∗ =
Cov(TF, TG)

Var(TG)
, (B.29)

which can also be derived with the partial derivates of Var(〈TF 〉) according to a as

Var(〈TF 〉) = Var(〈TF 〉) + a2 · Var(〈TG〉)− 2aCov(TF, TG) (B.30)

In subsurface scattering, T is the temporal intensity changing term. TF is the

joint random variable of temporal intensity and the subsurface scattering function,

while TG the one of temporal intensity change and the pre-integration irradiance

function. Please note that T might not be independent from F and G, and the

point of interest is per pixel. Namely, T , F , and G are functions on pixel level. In

the adaptive sampling framework, they are scalar, the luminance.

B.4.1.1 Time-invariant Scenario

In time-Invariant scenario, lighting intensity is temporally stable (E [T] is con-

stant and Var(T) = 0). Therefore, Eq. B.29 is simplified to

a∗s =
Cov(F,G)

Var(G)
, (B.31)

159

which indicates we can use any method to use temporal samples to improve the

estimate of CV coefficient. Note that Eq. B.31 and Eq. B.30 is only true when E [TG]

can be derived analytically. Otherwise, the formulation is more complex [Rousselle

et al., 2016]. As illustrated in our experimental example shown in Fig. B.1(d),

applying EMCM to estimate CV coefficient (at−1,EMCM) is equivalent to applying

EMA on single frame estimation (at−1,SF+EMA). They all converge to a∗ ≈ 0.477.

B.4.1.2 Time-variant Scenario

When the lighting is not temporal stable, the optimal stable CV coefficient by

Eq. B.31 does not hold as a valid alternative as a∗. We have to fall back to the

original Eq. B.29 instead. The temporal information in T has to be used for good

estimation. This is why at−1,SF+EMA fails the purpose. What it does is to estimate

the in-frame CV coefficient a∗s. Because inside each frame, the time-invariant prop-

erty holds. It only uses temporal history to improve the a∗s estimation instead of

considering the temporal random variable T , the temporal unstable intensity. Due

to the time-variant feature of T , we are unable to know the future of E [TG] in

real-time rendering beforehand. However EMCM provides the capability to focus

most recent changes to estimate temporal unstable CV coefficient, leading to a dif-

ferent coefficient. For example, the one as shown in Fig. B.1(g) (a∗ ≈ 1.388), where

∫
D

1
1+y

−a∗(1−y)dy = −8.53×10−4, and the variance remains resistant to temporal

change (Fig. B.1(i)).

160

B.4.2 CV Coefficient, Mean and Variance of CV Residual

To provide a better understanding of the effect of an additional temporal term

on CV (the relationship among a∗, the variance and mean of CV residual), we

provide an analysis of a general case in real-time rendering where T is independent

from F and G. This assumption is universal in real-time rendering where nearly

all types of lights have an intensity term and there is one major light changing

intensity in subsurface scattering range. As long as it is still subsurface scattering,

the intensity change will not cause the change of the subsurface scattering and the

pre-integrated irradiance function when the history is properly projected.

Generally in statistics, if we have three random variables T , F , G and a con-

stant parameter a, where T is independent from both F and G. We then have the

variance function for the residual as

Var(TF − aTG) = Var(T (F − aG)) (B.32)

= E [T]2Var(F − aG) + E [T]2Var(F − aG) + Var(T)E [F − aG]2

(B.33)

161

B.4.2.1 Stable Lighting

During stable lighting (E [T]2 ≫ Var(T)), the intensity E [T] becomes constant

and the variance term zero. Then Eq. B.33 simplifies to

VarE [T]2≫Var(T)(TF − aTG) = E [T]2Var(F − aG) (B.34)

where the only variance contribution is Var(F − aG). Note that the time-invariant

part of CV residual, E [F − aG], is masked by Var(T) = 0. Therefore normally, CV

coefficient does not care the expectation of the residual E [F − aG]. It can be any

value. The CV coefficient is just to reduce the variance part Var(F − aG) of the

residual.

B.4.2.2 Dynamic Lighting

With T being time-variant. Var(T) and E [T]2 can be both non-zero and un-

controllable by our algorithm. The only controllable terms in our algorithm are the

expectation and variance of the redisual term, Var(F − aG) and E [F − aG]. More-

over, the variance term Var(T) could be arbitrarily large in game with continuous

gunshots, lightning, and rhythmic lighting in nightclub (Var(T) ≫ E [T]2), then

VarVar(T)≫E [T]2(TF − aTG) = Var(T)(Var(F − aG) + E [F − aG]2) (B.35)

= Var(T)E [(F − aG)2] (B.36)

162

Since Eq. B.30 derived the optimal CV coefficient solution to minimize the total

variance analytically, an alternative representattion based on Eq. B.36 is

a∗ = argmin
a

E [(F − aG)2], (B.37)

where Var(T) is removed as it does not affect the optimization. This formulation is

least square estimation. When a = a∗, we have E [(F − aG)2] minimized.

B.4.3 In-frame Constant Control Variable

We try to resolve the temporal stability issue in real-time adaptive sampling.

Therefore being real-time is important. We cannot afford samples to sample both

TF and TG if they all need to access memory, especially if the memory access

pattern is incoherent. Monte Carlo sampling makes it worse. Because of this, TG is

accessed as cheaply as possible without Monte Carlo sampling, we use the analytic

solution (e.g., G(x) = 0.5 · h(t)). Namely, we have the following assumption:

TG = E [G]T and Var(G) = 0. (B.38)

B.4.3.1 Stable Lighting

With the given assumption in Eq. B.38, the time-invariant CV coefficient

updating formula (Eq. B.31) does not hold anymore and the estimator is

〈TF 〉 = TF − a · (❤❤❤❤❤❤❤TG− E [TG]), (B.39)

163

where a is not meaningful and can be any number. If T is still independent, the

residual variance is

Var(TF − aTG) = Var(〈TF 〉) = Var(F). (B.40)

B.4.3.2 Dynamic Lighting

During dynamic lighting, the optimal CV coefficient Eq. B.29 simplifies to

a∗ =
Cov(TF, T)

E [G]Var(T)
, (B.41)

which means, even with a constant in-frame control variable, CV is still valid and

working in temporal domain. This is key to resolve the temporal stability issue in

real-time adaptive sampling.

T is independent. If we can further assume that F and T are independent,

Eq. B.41 can be as simple as

a∗ =
E [F]

E [G]
. (B.42)

With the optimal CV coefficient, the time-invariant part of the residual becomes

zero as

E [F − a∗G] = 0. (B.43)

164

More specifically,
∫
f(y)− a∗g(y)dy = 0, and the variance Eq. B.33 is simplified to

Var(TF − aTG) = (Var(T) + E [T]2)Var(F). (B.44)

To help the understanding of this concept, we repeated the same experiment

shown in Section B.3. In this example the F random variable f(y) = 1
1+y

and the

G random varriable g(y) = 1 − y is independent from the time-variant variable T ,

h2(t). The in-frame constant control variate uses TG = E [G]T = 0.5 ·h2(t) directly.

The result is illustrated in Fig. B.2.

0 20 40 60 80 100

Time (t)

-2

-1

0

1

2

3

(a) Dynamic

20 40 60 80 100

Time (t)

0

0.5

1

1.5

C
V

 c
o
e
ff
ic

ie
n
t

(b) h2 CV coefficient

0 20 40 60 80 100

Time (t)

-3

-2

-1

0

1

2

3

R
e

s
id

u
a

l

(c) h2 Residual

0 20 40 60 80 100

Time (t)

0

0.2

0.4

0.6

0.8

1

R
e
M

S
E

(d) h2 Error

Figure B.2: The CV coefficient and variance with time independent in-frame con-
stant control variable.

B.5 More Static Lighting Insights

Fig. B.3 shows more temporal insights of the recorded history information and

the derived CV coefficient with ǫa = 10−6, acv = 0.005 for the Eq. 6.21.

B.6 Additional Images

Fig. B.4 shows a qualitative comparison between with no subsurface scatter-

ing, Separable [Jimenez et al., 2015] and ours.

165

a

bc
d

1
2

3
4

5

6
7

8

0 10 20 30

0.00582

0.00584

0.00586

In
te
ns
ity

ag ̄f 1024spp

0 10 20 30
0.76

0.78

0.80

0.82 b

0 10 20 30

0.242

0.244

0.246

In
te
ns
ity

c

0 10 20 30

0.18

0.20

0.22 d

0 10 20 30

Frame
0

10−8
10−7
10−6
10−5
10−4
10−3
10−2
10−1

OC
V

a1

cov(f,g)
var(g)

0 10 20 30

Frame
0.95

1.00

1.05

CV
 C

oe
ffi

cie
nt

a2

a

0 10 20 30

Frame
0

10−8

10−7

10−6

10−5

10−4

Va
ria

nc
e

(f
vs

 R
es

id
ua

l) a3

Var(Res)
Var(f)

0 10 20 30

Frame
0

20

40

60

Sa
m

pl
e

Co
un

t

a4

OCC
AS

0 10 20 30

Frame
10−7

10−6

10−5
b1

0 10 20 30

Frame

150

175

200

225 b2

0 10 20 30

Frame
10−4

10−3

10−2

10−1 b3

0 10 20 30

Frame
0

20

40

60
b4

0 10 20 30

Frame

10−6

10−5
c1

0 10 20 30

Frame

70

80 c2

0 10 20 30

Frame
10−5

10−4

10−3

10−2 c3

0 10 20 30

Frame
0

20

40

60
c4

0 10 20 30

Frame

10−7

10−6

10−5 d1

0 10 20 30

Frame

130

132

134 d2

0 10 20 30

Frame

10−4

d3

0 10 20 30

Frame
0

20

40

60
d4

Figure B.3: Static lighting temporal insight with Control Variates for four pixels.

166

(a) Without subsurface scattering

(b) Separable

(c) Ours

Figure B.4: Additional qualitative comparison between without subsurface scatter-
ing, Separable and Ours.

167

Appendix C: Common Material Parameters for Burley’s Normalized

Profile

The diffuse mean free path parameters are directly computed from experiment

data from [Jensen et al., 2001] with the assumption that light are evenly scattered

(g = 0) in the isotropic media composed of the corresponding materials. The result

is shown in Table C.1.

Table C.1: The measured parameters and the corresponding diffuse mean free path
ℓd when g = 0.

Material
σs

′[mm−1] σa[mm−1] ℓd[mm](g = 0) Diffuse Reflectance (A)
η

R G B R G B R G B R G B
Apple 2.29 2.39 1.97 0.0030 0.0034 0.046 6.97 6.40 1.92 0.85 0.84 0.53 1.3
Chicken1 0.15 0.21 0.38 0.015 0.077 0.19 12.12 4.37 2.23 0.31 0.15 0.10 1.3
Chicken2 0.19 0.25 0.32 0.018 0.088 0.20 9.84 3.76 2.16 0.32 0.16 0.10 1.3
Cream 7.38 5.47 3.15 0.0002 0.0028 0.0163 15.03 4.67 2.57 0.98 0.90 0.73 1.3
Ketchup 0.18 0.07 0.03 0.061 0.97 1.45 5.33 0.80 0.56 0.16 0.01 0.00 1.3
Marble 2.19 2.62 3.00 0.0021 0.0041 0.0071 8.51 5.57 3.96 0.83 0.79 0.75 1.5
Potato 0.68 0.70 0.55 0.0024 0.0090 0.12 14.29 7.27 2.31 0.77 0.62 0.21 1.3
Skimmilk 0.70 1.22 1.90 0.0014 0.0025 0.0142 18.44 10.45 3.51 0.81 0.81 0.69 1.3
Skin1 0.74 0.88 1.01 0.032 0.17 0.48 3.75 1.47 0.79 0.44 0.22 0.13 1.3
Skin2 1.09 1.59 1.79 0.013 0.070 0.145 4.85 1.11 0.62 0.63 0.44 0.34 1.3
Spectralon 11.6 20.4 14.9 0.00 0.00 0.00 - - - 1.00 1.00 1.00 1.3
Wholemilk 2.55 3.21 3.77 0.0011 0.0024 0.014 10.90 6.58 2.54 0.91 0.88 0.76 1.3

168

Bibliography

Sameer Agarwal, Ravi Ramamoorthi, Serge Belongie, and Henrik Wann Jensen.
Structured Importance Sampling of Environment Maps. In ACM SIGGRAPH
2003 Papers, SIGGRAPH ’03, page 605612, New York, NY, USA, 2003. Associa-
tion for Computing Machinery. ISBN 1581137095. doi: 10.1145/1201775.882314.
URL https://doi.org/10.1145/1201775.882314.

C Alexader. Risk management and analysis. volume 1: Measuring and modelling
financial risk, 1999.

AMD. Introducing RDNA Architecture, 2019. URL https://www.amd.com/

system/files/documents/rdna-whitepaper.pdf.

AMD. RX 6800 graphics card, Nov 2020. URL https://www.amd.com/en/

products/graphics/amd-radeon-rx-6800.

Mahdi M Bagher, Cyril Soler, Kartic Subr, Laurent Belcour, and Nicolas Holzschuch.
Interactive rendering of acquired materials on dynamic geometry using bandwidth
prediction. In Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, pages 127–134, 2012.

Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and Tor M Aamodt.
Analyzing CUDA workloads using a detailed GPU simulator. In 2009 IEEE In-
ternational Symposium on Performance Analysis of Systems and Software, pages
163–174. IEEE, 2009.

Colin Barré-Brisebois, Henrik Halén, Graham Wihlidal, Andrew Lauritzen, Jasper
Bekkers, Tomasz Stachowiak, and Johan Andersson. Hybrid rendering for real-
time ray tracing. In Ray Tracing Gems, pages 437–473. Springer, 2019.

Thiago Bastos and Waldemar Celes. GPU-accelerated adaptively sampled distance
fields. In 2008 IEEE International Conference on Shape Modeling and Applica-
tions, pages 171–178. IEEE, 2008.

Alex Battaglia. Inside Unreal Engine 5: how Epic delivers its gener-
ational leap, May 2020. URL https://www.eurogamer.net/articles/

digitalfoundry-2020-unreal-engine-5-playstation-5-tech-demo-analysis.

169

https://doi.org/10.1145/1201775.882314
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/en/products/graphics/amd-radeon-rx-6800
https://www.amd.com/en/products/graphics/amd-radeon-rx-6800
https://www.eurogamer.net/articles/digitalfoundry-2020-unreal-engine-5-playstation-5-tech-demo-analysis
https://www.eurogamer.net/articles/digitalfoundry-2020-unreal-engine-5-playstation-5-tech-demo-analysis

Richard J Bauer and Julie R Dahlquist. Technical Markets Indicators: Analysis &
Performance, volume 64. John Wiley & Sons, 1998.

Laurent Belcour, Cyril Soler, Kartic Subr, Nicolas Holzschuch, and Fredo Durand.
5D covariance tracing for efficient defocus and motion blur. ACM Transactions
on Graphics (TOG), 32(3):1–18, 2013.

Laurent Belcour, Kavita Bala, and Cyril Soler. A local frequency analysis of light
scattering and absorption. ACM Transactions on Graphics (TOG), 33(5):1–17,
2014.

Jakub Boksansky, Michael Wimmer, and Jiri Bittner. Ray Traced Shadows: Main-
taining Real-Time Frame Rates, pages 159–182. Apress, Berkeley, CA, 2019.
ISBN 978-1-4842-4427-2. doi: 10.1007/978-1-4842-4427-2 13. URL https:

//doi.org/10.1007/978-1-4842-4427-2_13.

Mark R. Bolin and Gary W. Meyer. A perceptually based adaptive sampling al-
gorithm. In Proceedings of the 25th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’98, page 299309, New York, NY,
USA, 1998. Association for Computing Machinery. ISBN 0897919998. doi:
10.1145/280814.280924. URL https://doi.org/10.1145/280814.280924.

George Borshukov and John P Lewis. Realistic human face rendering for” The
Matrix Reloaded”. In ACM SIGGRAPH 2005 Courses, page 13, New York, NY,
2005. ACM.

Brent Burley. Extending the Disney BRDF to a BSDF with integrated subsurface
scattering. In SIGGRAPH Course: Physically Based Shading in Theory and
Practice, New York, NY, 2015. ACM.

Per H Christensen. An approximate reflectance profile for efficient subsurface scat-
tering. In ACM SIGGRAPH 2015 Talks, page 25, New York, NY, 2015. ACM.

Per H. Christensen and Brent Burley. Approximate Reflectance Profiles for Efficient
Subsurface Scattering. Technical report, Pixar, 2015.

Thomas F Coleman and Yuying Li. An interior trust region approach for nonlinear
minimization subject to bounds. SIAM Journal on optimization, 6(2):418–445,
1996.

Cyril Crassin, Fabrice Neyret, Miguel Sainz, Simon Green, and Elmar Eisemann.
Interactive indirect illumination using voxel cone tracing. In Computer Graphics
Forum, volume 30, pages 1921–1930. Wiley Online Library, 2011.

Holger Dammertz, Johannes Hanika, Alexander Keller, and Hendrik Lensch. A
hierarchical automatic stopping condition for Monte Carlo global illumination. In
Eurographics WSCG 2010: Full Paper Proceedings, pages 159–164. Václav Skala-
UNION Agency, 2010.

170

https://doi.org/10.1007/978-1-4842-4427-2_13
https://doi.org/10.1007/978-1-4842-4427-2_13
https://doi.org/10.1145/280814.280924

Eugene d’Eon and Geoffrey Irving. A quantized-diffusion model for rendering
translucent materials. ACM transactions on graphics (TOG), 30(4):1–14, 2011.

Eugene d’Eon, David Luebke, and Eric Enderton. Efficient rendering of human
skin. In Proceedings of the 18th Eurographics conference on Rendering Techniques,
pages 147–157, Aire-la-Ville, Switzerland, 2007. Eurographics Association.

Craig Donner and Henrik Wann Jensen. Light diffusion in multi-layered translucent
materials. ACM Transactions on Graphics (ToG), 24(3):1032–1039, 2005.

Michal Drobot. Software-Based Variable Rate Shading in Call of Duty: Modern
Warfare. In SIGGRAPH Course: Advances in Real-Time Rendering in Games:
Part 1, Washington, D.C., 2020. ACM.

Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X Sillion.
A frequency analysis of light transport. ACM Transactions on Graphics (TOG),
24(3):1115–1126, 2005.

Eugene dEon and David Luebke. Advanced techniques for realistic real-time skin
rendering. GPU Gems, 3(3):293–347, 2007.

Carl Eckart and Gale Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1(3):211–218, 1936.

WG Egan, To Hilgeman, and J Reichman. Determination of absorption and scat-
tering coefficients for nonhomogeneous media. 2: Experiment. Applied Optics, 12
(8):1816–1823, 1973.

Unreal Engine. Dynamic Resolution, Dec 2020. URL https://docs.

unrealengine.com/en-US/RenderingAndGraphics/DynamicResolution/

index.html. 4.26.

Shaohua Fan, Stephen Chenney, Bo Hu, Kam-Wah Tsui, and Yu-chi Lai. Optimizing
control variate estimators for rendering. Computer Graphics Forum, 25(3):351–
357, 2006.

Tony Finch. Incremental calculation of weighted mean and variance. University of
Cambridge, 4(11-5):41–42, 2009.

Sarah F Frisken, Ronald N Perry, Alyn P Rockwood, and Thouis R Jones. Adap-
tively sampled distance fields: A general representation of shape for computer
graphics. In Proceedings of the 27th annual conference on Computer graphics and
interactive techniques, pages 249–254, 2000.

Henry Fuchs, John Poulton, John Eyles, Trey Greer, Jack Goldfeather, David
Ellsworth, Steve Molnar, Greg Turk, Brice Tebbs, and Laura Israel. Pixel-planes 5:
A heterogeneous multiprocessor graphics system using processor-enhanced mem-
ories. ACM Siggraph Computer Graphics, 23(3):79–88, 1989.

171

https://docs.unrealengine.com/en-US/RenderingAndGraphics/DynamicResolution/index.html
https://docs.unrealengine.com/en-US/RenderingAndGraphics/DynamicResolution/index.html
https://docs.unrealengine.com/en-US/RenderingAndGraphics/DynamicResolution/index.html

Evgenii Golubev. Efficient screen-space subsurface scattering using Burleys normal-
ized diffusion in real-time, 2018. URL http://advances.realtimerendering.

com/s2018/Efficient%20screen%20space%20subsurface%20scattering%

20Siggraph%202018.pdf.

Evgenii Golubev. Sampling Burley’s Normalized Diffusion Profiles, 2019. URL
https://zero-radiance.github.io/post/sampling-diffusion/.

Pascal Grittmann, Iliyan Georgiev, Philipp Slusallek, and Jaroslav Křivánek.
Variance-Aware Multiple Importance Sampling. ACM Trans. Graph. (SIG-
GRAPH Asia 2019), 38(6), 2019. doi: 10.1145/3355089.3356515.

CC Grosjean. Multiple Isotropic Scattering in Convex Homogeneous Media Bounded
by Vacuum. Part II. Some Practical Applications. Technical report, Univ. of
Ghent, 1959.

Till Guldimann, Peter Zangari, Jacques Longerstaey, John Matero, and Scott
Howard. Riskmetrics technical document. Technical report, Morgan Guaranty
Trust Company, 1995.

Ralf Habel, Per H Christensen, and Wojciech Jarosz. Photon beam diffusion: a
hybrid Monte Carlo method for subsurface scattering. In Proceedings of the Euro-
graphics Symposium on Rendering, pages 27–37, Aire-la-Ville, Switzerland, 2013.
Eurographics Association.

Eric Haines and Tomas Akenine-Möller. Ray Tracing Gems: High-Quality and Real-
Time Rendering with DXR and Other APIs. Springer, 2019.

Jon Hasselgren, Jacob Munkberg, Marco Salvi, Anjul Patney, and Aaron Lefohn.
Neural temporal adaptive sampling and denoising. In Computer Graphics Forum,
volume 39, pages 147–155. Wiley Online Library, 2020.

Bingsheng He, Naga K Govindaraju, Qiong Luo, and Burton Smith. Efficient
gather and scatter operations on graphics processors. In Proceedings of the 2007
ACM/IEEE conference on Supercomputing, page 46. ACM, 2007.

Yong He, Yan Gu, and Kayvon Fatahalian. Extending the Graphics Pipeline with
Adaptive, Multi-Rate Shading. ACM Trans. Graph., 33(4), July 2014. ISSN
0730-0301. doi: 10.1145/2601097.2601105. URL https://doi.org/10.1145/

2601097.2601105.

E. Heitz. Can’t Invert the CDF? The Triangle-Cut Parameterization of the Region
under the Curve. Computer Graphics Forum, 39(4):121–132, 2020. doi: https://
doi.org/10.1111/cgf.14058. URL https://onlinelibrary.wiley.com/doi/abs/

10.1111/cgf.14058.

Timothy C Hesterberg and Barry L Nelson. Control variates for probability and
quantile estimation. Management Science, 44(9):1295–1312, 1998.

172

http://advances.realtimerendering.com/s2018/Efficient%20screen%20space%20subsurface%20scattering%20Siggraph%202018.pdf
http://advances.realtimerendering.com/s2018/Efficient%20screen%20space%20subsurface%20scattering%20Siggraph%202018.pdf
http://advances.realtimerendering.com/s2018/Efficient%20screen%20space%20subsurface%20scattering%20Siggraph%202018.pdf
https://zero-radiance.github.io/post/sampling-diffusion/
https://doi.org/10.1145/2601097.2601105
https://doi.org/10.1145/2601097.2601105
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14058
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14058

Mark D Hill and Alan Jay Smith. Evaluating associativity in CPU caches. IEEE
Transactions on Computers, 38(12):1612–1630, 1989.

Rama Karl Hoetzlein. GVDB: raytracing sparse voxel database structures on the
GPU. In Proceedings of High Performance Graphics, pages 109–117. Eurographics
Association, 2016.

Nikolai Hofmann, Jon Hasselgren, Petrik Clarberg, and Jacob Munkberg. Interactive
Path Tracing and Reconstruction of Sparse Volumes. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 4(1):1–19, 2021.

Jose A Iglesias-Guitian, Bochang Moon, Charalampos Koniaris, Eric Smolikowski,
and Kenny Mitchell. Pixel History Linear Models for Real-Time Temporal Fil-
tering. Computer Graphics Forum, 35(7):363–372, 2016.

Mark Jarzynski and Marc Olano. Hash Functions for GPU Rendering. Journal of
Computer Graphics Techniques (JCGT), 9(3):20–38, October 2020. ISSN 2331-
7418. URL http://jcgt.org/published/0009/03/02/.

Henrik Wann Jensen and Juan Buhler. A rapid hierarchical rendering technique for
translucent materials. In ACM SIGGRAPH 2005 Courses, page 12, New York,
NY, 2005. ACM.

Henrik Wann Jensen, Stephen R Marschner, Marc Levoy, and Pat Hanrahan. A
practical model for subsurface light transport. In Proceedings of the 28th annual
conference on Computer graphics and interactive techniques, pages 511–518, New
York, NY, 2001. ACM.

Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza. Dis-
secting the NVidia Turing T4 GPU via Microbenchmarking. arXiv preprint
arXiv:1903.07486, 2019.

Jorge Jimenez, Veronica Sundstedt, and Diego Gutierrez. Screen-space perceptual
rendering of human skin. ACM Transactions on Applied Perception (TAP), 6(4):
23, 2009.

Jorge Jimenez, Kroly Zsolnai, Adrian Jarabo, Christian Freude, Thomas Auzinger,
Xian-Chun Wu, Javier von der Pahlen, Michael Wimmer, and Diego Gutier-
rez. Separable Subsurface Scattering. Computer Graphics Forum, 34(6):188–197,
September 2015.

Viktor Kämpe, Erik Sintorn, and Ulf Assarsson. High resolution sparse voxel DAGs.
ACM Transactions on Graphics (TOG), 32(4):101, 2013.

Brian Karis. High Quality Temporal Supersampling, 2014. URL http://advances.

realtimerendering.com/s2014/epic/TemporalAA.pptx.

173

http://jcgt.org/published/0009/03/02/
http://advances.realtimerendering.com/s2014/epic/TemporalAA.pptx
http://advances.realtimerendering.com/s2014/epic/TemporalAA.pptx

Alexander Keller, Timo Viitanen, Colin Barré-Brisebois, Christoph Schied, and
Morgan McGuire. Are we done with ray tracing? In SIGGRAPH Courses,
pages 3–1, 2019.

Mahmoud Khairy, Zhesheng Shen, Tor M Aamodt, and Timothy G Rogers. Accel-
Sim: An extensible simulation framework for validated GPU modeling. In 2020
ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA), pages 473–486. IEEE, 2020.

David Kirk and James Arvo. Unbiased sampling techniques for image synthesis.
ACM SIGGRAPH Computer Graphics, 25(4):153–156, 1991.

Ivo Kondapaneni, Petr Vévoda, Pascal Grittmann, Tomáš Skřivan, Philipp
Slusallek, and Jaroslav Křivánek. Optimal multiple importance sampling. ACM
Transactions on Graphics (TOG), 38(4):1–14, 2019.

Jaroslav Křivánek and Mark Colbert. Real-time shading with filtered importance
sampling. Computer Graphics Forum, 27(4):1147–1154, 2008.

Eric P Lafortune and Yves D Willems. Bi-directional path tracing. 1993.

Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David Luebke, and
Dinesh Manocha. Fast BVH construction on GPUs. In Computer Graphics Forum,
volume 28, pages 375–384. Wiley Online Library, 2009.

Stephen S Lavenberg, Thomas L Moeller, and Peter D Welch. Statistical results
on control variables with application to queueing network simulation. Operations
Research, 30(1):182–202, 1982.

Mark E Lee, Richard A Redner, and Samuel P Uselton. Statistically optimized
sampling for distributed ray tracing. In Proceedings of the 12th annual conference
on Computer graphics and interactive techniques, pages 61–68, 1985.

Edward Liu. DLSS 2.0 - Image Reconstruction for Real-time Rendering with
Deep Learning, 2020. URL https://developer.nvidia.com/gtc/2020/video/

s22698-vid.

Ian Mallett and Cem Yuksel. Deferred adaptive compute shading. In Proceedings
of the Conference on High-Performance Graphics, pages 1–4, 2018.

Marco Manzi, Markus Kettunen, Frédo Durand, Matthias Zwicker, and Jaakko
Lehtinen. Temporal gradient-domain path tracing. ACM Transactions on Graph-
ics (TOG), 35(6):246, 2016.

Adam Marrs, Josef Spjut, Holger Gruen, Rahul Sathe, and Morgan McGuire. Adap-
tive temporal antialiasing. In Proceedings of the Conference on High-Performance
Graphics, page 1, New York, NY, 2018. ACM.

174

https://developer.nvidia.com/gtc/2020/video/s22698-vid
https://developer.nvidia.com/gtc/2020/video/s22698-vid

Daniel Meister, Jakub Boksansky, Michael Guthe, and Jiri Bittner. On Ray Re-
ordering Techniques for Faster GPU Ray Tracing. In Symposium on Interactive
3D Graphics and Games, pages 1–9, 2020.

Xiaoxu Meng, Ruofei Du, Matthias Zwicker, and Amitabh Varshney. Kernel foveated
rendering. Proceedings of the ACM on Computer Graphics and Interactive Tech-
niques, 1(1):1–20, 2018.

Tom Mertens, Jan Kautz, Philippe Bekaert, Frank Van Reeth, and H-P Seidel.
Efficient rendering of local subsurface scattering. In 11th Pacific Conference on-
Computer Graphics and Applications, 2003. Proceedings., pages 51–58. IEEE,
2003.

Don P. Mitchell. Generating antialiased images at low sampling densities. In Pro-
ceedings of the 14th Annual Conference on Computer Graphics and Interactive
Techniques, SIGGRAPH ’87, page 6572, New York, NY, USA, 1987. Association
for Computing Machinery. ISBN 0897912276. doi: 10.1145/37401.37410. URL
https://doi.org/10.1145/37401.37410.

Martin Mittring and Crytek GmbH. Advanced virtual texture topics. In ACM
SIGGRAPH 2008 Games, pages 23–51. 2008.

Bochang Moon, Nathan Carr, and Sung-Eui Yoon. Adaptive Rendering based on
Weighted Local Regression. ACM Transactions on Graphics (TOG), 33(5):170,
2014.

Bochang Moon, Jose A Iglesias-Guitian, Sung-Eui Yoon, and Kenny Mitchell. Adap-
tive rendering with linear predictions. ACM Transactions on Graphics (TOG),
34(4):121, 2015.

Thomas Müller, Fabrice Rousselle, Alexander Keller, and Jan Novák. Neural control
variates. ACM Trans. Graph., 39(6), December 2020. doi: 10.1145/3414685.
3417804. URL http://doi.acm.org/10.1145/3414685.3417804.

Barry L Nelson. Control variate remedies. Operations Research, 38(6):974–992,
1990.

Fred Edwin Nicodemus, Joseph C Richmond, Jack J Hsia, Irving W Ginsberg, and
Thomas Limperis. Geometrical considerations and nomenclature for reflectance.
Final Report National Bureau of Standards, Washington, DC. Inst. for Basic Stan-
dards. US Department of Commerce, National Bureau of Standards, Gaithers-
burg, MD, 1977.

Anthony E Nocentino and Philip J Rhodes. Optimizing memory access on GPUs
using morton order indexing. In Proceedings of the 48th Annual Southeast Regional
Conference, pages 1–4, 2010.

175

https://doi.org/10.1145/37401.37410
http://doi.acm.org/10.1145/3414685.3417804

Jan Novák, Andrew Selle, and Wojciech Jarosz. Residual ratio tracking for esti-
mating attenuation in participating media. ACM Trans. Graph., 33(6):179–1,
2014.

Cedric Nugteren, Gert-Jan Van den Braak, Henk Corporaal, and Henri Bal. A
detailed GPU cache model based on reuse distance theory. In 2014 IEEE 20th
International Symposium on High Performance Computer Architecture (HPCA),
pages 37–48. IEEE, 2014.

NVIDIA. NVIDIA Turing GPU Architecture Whitepaper, 2018.
URL https://www.nvidia.com/content/dam/en-zz/Solutions/

design-visualization/technologies/turing-architecture/

NVIDIA-Turing-Architecture-Whitepaper.pdf.

Marc Olano, Bob Kuehne, and Maryann Simmons. Automatic shader level of de-
tail. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on
Graphics hardware, pages 7–14. Eurographics Association, 2003.

Anjul Patney, Marco Salvi, Joohwan Kim, Anton Kaplanyan, Chris Wyman, Nir
Benty, David Luebke, and Aaron Lefohn. Towards foveated rendering for gaze-
tracked virtual reality. ACM Transactions on Graphics (TOG), 35(6):179, 2016.

Eric Penner and George Borshukov. Pre-integrated skin shading. Gpu Pro, 2:41–55,
2011.

Ken Perlin. An image synthesizer. ACM Siggraph Computer Graphics, 19(3):287–
296, 1985.

Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically based rendering: From
theory to implementation. Morgan Kaufmann, Cambridge, MA, 2016.

Fábio Policarpo, Manuel M Oliveira, and Joao LD Comba. Real-time relief map-
ping on arbitrary polygonal surfaces. In Proceedings of the 2005 symposium on
Interactive 3D graphics and games, pages 155–162, 2005.

Ravi Ramamoorthi and Pat Hanrahan. On the relationship between radiance and
irradiance: determining the illumination from images of a convex lambertian ob-
ject. JOSA A, 18(10):2448–2459, 2001.

Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. A first-order analysis
of lighting, shading, and shadows. ACM Transactions on Graphics (TOG), 26(1):
2–es, 2007.

Zhong Ren, Kun Zhou, Stephen Lin, and Baining Guo. Gradient-based Interpola-
tion and Sampling for Real-time Rendering of Inhomogeneous, Single-scattering
Media. In Computer Graphics Forum, volume 27, pages 1945–1953. Wiley Online
Library, 2008.

176

https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

Maurice Ribble. Next-Gen Tile-Based GPUs, February 2008. URL
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/

gdc2008_ribble_maurice_TileBasedGpus.pdf.

Brian D Ripley. Stochastic simulation, volume 316. John Wiley & Sons, New Jersey,
2009.

Martin Roberts. The Unreasonable Effectiveness of Quasiran-
dom Sequences, 2018. URL http://extremelearning.com.au/

unreasonable-effectiveness-of-quasirandom-sequences/.

Fabrice Rousselle, Wojciech Jarosz, and Jan Novák. Image-space control variates
for rendering. ACM Transactions on Graphics (TOG), 35(6):1–12, 2016.

Daniel Scherzer, Lei Yang, Oliver Mattausch, Diego Nehab, Pedro V Sander, Michael
Wimmer, and Elmar Eisemann. Temporal coherence methods in real-time ren-
dering. 31(8):2378–2408, 2012.

Christoph Schied, Anton Kaplanyan, Chris Wyman, Anjul Patney, Chakravarty
R Alla Chaitanya, John Burgess, Shiqiu Liu, Carsten Dachsbacher, Aaron Lefohn,
and Marco Salvi. Spatiotemporal variance-guided filtering: real-time reconstruc-
tion for path-traced global illumination. In Proceedings of High Performance
Graphics, page 2, New York, NY, 2017. ACM.

Christoph Schied, Christoph Peters, and Carsten Dachsbacher. Gradient estimation
for real-time adaptive temporal filtering. Proceedings of the ACM on Computer
Graphics and Interactive Techniques, 1(2):24, 2018.

Cyril Soler, Kartic Subr, Frédo Durand, Nicolas Holzschuch, and François Sillion.
Fourier depth of field. ACM Transactions on Graphics (TOG), 28(2):1–12, 2009.

Gilbert W Stewart. On the early history of the singular value decomposition. SIAM
review, 35(4):551–566, 1993.

László Szécsi, Mateu Sbert, and László Szirmay-Kalos. Combined correlated and im-
portance sampling in direct light source computation and environment mapping.
Computer Graphics Forum, 23(3):585–593, 2004.

Surya T Tokdar and Robert E Kass. Importance sampling: a review. Wiley Inter-
disciplinary Reviews: Computational Statistics, 2(1):54–60, 2010.

Ruey S Tsay. Analysis of financial time series, volume 543. John Wiley & Sons,
New Jersey, 2005.

Unity. Dynamic Resolution, Apr 2019. URL https://docs.unity3d.com/Manual/

DynamicResolution.html. 2019.4 LTS.

177

http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/gdc2008_ribble_maurice_TileBasedGpus.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2012/10/gdc2008_ribble_maurice_TileBasedGpus.pdf
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
http://extremelearning.com.au/unreasonable-effectiveness-of-quasirandom-sequences/
https://docs.unity3d.com/Manual/DynamicResolution.html
https://docs.unity3d.com/Manual/DynamicResolution.html

Eric Veach and Leonidas J. Guibas. Optimally Combining Sampling Techniques for
Monte Carlo Rendering. In Proceedings of the 22nd Annual Conference on Com-
puter Graphics and Interactive Techniques, SIGGRAPH ’95, page 419428, New
York, NY, USA, 1995. Association for Computing Machinery. ISBN 0897917014.
doi: 10.1145/218380.218498. URL https://doi.org/10.1145/218380.218498.

Alberto Jaspe Villanueva, Fabio Marton, and Enrico Gobbetti. SSVDAGs:
symmetry-aware sparse voxel DAGs. In Proceedings of the 20th ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games, pages 7–14. ACM, 2016.

Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

BP Welford. Note on a method for calculating corrected sums of squares and prod-
ucts. Technometrics, 4(3):419–420, 1962.

Graham Wihlidal. 4K Checkerboard in Battlefield 1 and Mass Effect Andromeda.
In Game Developers Conference, volume 3, page 8, 2017.

Lance Williams. Pyramidal parametrics. In Proceedings of the 10th annual confer-
ence on Computer graphics and interactive techniques, pages 1–11, 1983.

Kai Xiao, Gabor Liktor, and Karthik Vaidyanathan. Coarse pixel shading with
temporal supersampling. In Proceedings of the ACM SIGGRAPH Symposium on
Interactive 3D Graphics and Games, page 1, New York, NY, 2018. ACM.

Tiantian Xie and Marc Olano. Real-time Subsurface Control Variates: Temporally
Stable Adaptive Sampling. Proceedings of the ACM on Computer Graphics and
Interactive Techniques, 4(1):1–18, 2021.

Tiantian Xie, Marc Olano, Brian Karis, and Krzysztof Narkowicz. Real-time sub-
surface scattering with single pass variance-guided adaptive importance sampling.
Proceedings of the ACM on Computer Graphics and Interactive Techniques, 3(1):
1–21, 2020.

Lei Yang, Diego Nehab, Pedro V Sander, Pitchaya Sitthi-amorn, Jason Lawrence,
and Hugues Hoppe. Amortized supersampling. ACM Transactions on Graphics
(TOG), 28(5):135, 2009.

Lei Yang, Shiqiu Liu, and Marco Salvi. A survey of temporal antialiasing techniques.
In Computer Graphics Forum, volume 39, pages 607–621. Wiley Online Library,
2020.

Zheng Zeng, Shiqiu Liu, Jinglei Yang, Wang Lu, and Yan Ling-Qi. Temporally
Reliable Motion Vectors for Real-time Ray Tracing. In Computer Graphics Forum,
volume 40. Wiley Online Library, 2021.

Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ra-
mamoorthi, Fabrice Rousselle, Pradeep Sen, Cyril Soler, and S-E Yoon. Recent
advances in adaptive sampling and reconstruction for Monte Carlo rendering. In
Computer graphics forum, volume 34, pages 667–681. Wiley Online Library, 2015.

178

https://doi.org/10.1145/218380.218498

	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Thesis Statement
	Cache and Bandwidth Aware
	Heterogeneous Real-time Rendering
	Adaptive Sampling
	Subsurface Scattering
	Outline

	Related Work and Background
	Monte Carlo Integration
	Variance Reduction
	Adaptive Sampling

	Subsurface Scattering
	Real-time Model
	Real-time Acceleration Techniques

	Heterogeneous Real-time Rendering
	GPU Cache
	Simplified GPU Data Cache Architecture
	Cache Miss Type
	Source of Incoherence

	Framework
	Heterogeneous Computing Demands
	Heterogeneous Sample Demands
	Heterogeneous Memory Demands

	Formulation
	Summary

	Real-time Adaptive Sampling
	Introduction
	Basic Metrics
	Temporal Anti-aliasing
	Metrics within Temporal Accumulation
	Circle Scenario
	Disocclusion

	Local Guiding Integration
	Global TAA
	Deep Learning Super Sampling (DLSS)

	Discussion and Limitations

	Subsurface Scattering
	Efficient Sample Generation
	Sampling Function
	Sampling Sequence

	Adaptive Filtered Importance Sampling
	Advanced Design
	Unification of Scattering
	Importance-Guided Acceleration

	Summary

	Real-time Control Variates
	Introduction
	Motivating Example
	Control Variates
	Theory
	In-frame Standard Control Variable
	In-frame Constant Control Variable

	Online Solution
	Online Covariance
	Exponential Moving Covariance (EMC)
	Exponential Moving Covariance Matrix (EMCM)
	Coefficient Boundary
	Online Joint Estimation Algorithm

	Offline CV Coefficient Estimation
	Static Lighting
	Discussion and Limitation

	Implementation and Results
	Implementation
	Static Scene
	Quality Comparisons
	Adaptive Sampling Quality
	Equal Quality Comparison
	Real-time Counterpart Comparison
	Performance Breakdown
	Effect of Sample Budget on Time and Quality

	Control Variates on Static Scene
	Dynamic Scene
	Cache Analysis
	GPGPU-Sim
	Adaptive vs. Fixed Sampling Simulation

	Conclusion
	Future Works
	Contributions

	Separable Approximation to Burley's Model
	Fitting
	Validation

	Control Variates
	Exponential moving covariance
	Variable-weight covariance
	Exponential moving covariance
	EWMA covariance estimator

	Covariance of Two Batch Means
	CV Coefficient and Residual Function Selection
	Scenario Setup
	Result

	Theoretical Foundation
	Updating Function
	CV Coefficient, Mean and Variance of CV Residual
	In-frame Constant Control Variable

	More Static Lighting Insights
	Additional Images

	Common Material Parameters for Burley's Normalized Profile

