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Fig. 1. Dynamic subsurface scene just after light has been turned off. Our method has consistently lower

sample count (d) than SPVG [Xie et al. 2020] (c) at this frame. It leads to lower sampling pass time in dynamic

lighting from 12.9 ms to 5.2 ms at 3360 × 1440 (×2.5), while maintaining good quality (47.5 dB) vs SPVG (48.6

dB). Separable (b) runs fastest for the whole subsurface pass at 4.0 ms, however, with visible banding artifacts.

Real-time adaptive sampling is a new technique recently proposed for efficient importance sampling in real-

time Monte Carlo sampling in subsurface scattering. It adaptively places samples based on variance tracking

to help escape the uncanny valley of subsurface rendering. However, the occasional performance drop due to

temporal lighting dynamics (e.g., guns or lights turning on and off) could hinder adoption in games or other

applications where smooth high frame rate is preferred. In this paper we propose a novel usage of Control

Variates (CV) in the sample domain instead of shading domain to maintain a consistent low pass time. Our

algorithm seamlessly reduces to diffuse with zero scattering samples for sub-pixel scattering. We propose a

novel joint-optimization algorithm for sample count and CV coefficient estimation. The main enabler is our

novel time-variant covariance updating method that helps remove the effect of recent temporal dynamics

from variance tracking. Since bandwidth is critical in real-time rendering, a solution without adding any extra

textures is also provided.
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1 INTRODUCTION

Real-time adaptive sampling is a recent technique for subsurface scattering with importance

sampling of Burley’s normalized diffusion profile [Xie et al. 2020]. It has been adopted in real-time

rendering engines (e.g., Unreal Engine 4). Its low time and space complexity O(1) increases the

sample efficiency of Monte Carlo algorithms for real-time rendering. The basic idea is to use sample

histories in shading domain to estimate the spatial Monte Carlo sampling variance and adjust the

sample count to minimize the variance to a target variance level in real time.

However, if high temporal variance is present after history projection, it will also increase

the sample count and pass time to achieve convergence. Real-time applications like games are

intrinsically dynamic, including i) gunshots/lightning creating rapid incoming radiance changes, ii)

dynamic light particles changing intensities, and iii) moving objects creating dynamic shadowing.

In this paper, we propose a novel technique, real-time subsurface control variates, to address the

issue. Control variates is a variance reduction technique for Monte Carlo sampling. If we can find a

good approximation of the sampling function, with the optimal CV coefficient, the variance after

MC sampling can be reduced given the same number of samples. In other words, given a target

variance, the sample count can be minimized. Note that the application of CV in this paper is a

little different from the typical use. We only reduce the monitored change in variance caused by

the lighting changes, but keep the same variance as the MC estimator when the lighting is static

because the monitored variance controls the sample count estimation [Xie et al. 2020]. In this paper,

we focus on real-time subsurface scattering. To have real-time subsurface scattering anytime and

anywhere efficiently using control variates, the following four challenges are addressed:

1) Minimize subsurface scattering region. Since diffuse is the subsurface scattering within a pixel,

the actual scattering should only consider distant scattering further than one pixel. By separating

the distant subsurface scattering component out from diffuse, it provides an opportunity to handle

all scattering in the same framework efficiently. In this paper, we provided such a unified frame-

work suitable for both density-function-based and artist-friendly control to support down to zero

subsurface samples per pixel (spp) without explicitly switching to a diffuse material.

2) Evaluate the time-variant covariance matrix. Calculating the optimal CV coefficient online requires

a covariance matrix that captures the recent spatial correlations between the sampling function

and the control for time-variant scenarios like dynamic lighting, yet without temporal variance.

We propose a novel covariance estimation based on the CV residual, exponential moving covariance

matrix. We compare this to the widely adopted exponential weighted moving average (EWMA)

covariance estimator [Guldimann et al. 1995].

3) Compute the optimal CV coefficient online. We provide online joint estimation algorithms to find

the sample count and the CV coefficient numerically. Since the estimated coefficient is dependent on

the control variable with unknown distribution, the rendering result based on the control variates

might be biased [Lavenberg et al. 1982]. To avoid this issue, we shift the application of CV from

shading domain to sample domain, where the CV guides sample count estimation. In this way,

we also shift potential bias from shading domain to sample domain. Since our online covariance

computation assures overestimation, the final shading result is still unbiased. Nevertheless, the

rendering time for subsurface scattering is reduced up to ×3.11 during dynamic lighting tests.

4) Lightweight CV coefficient. Since online optimal CV coefficient estimation still requires an

additional texture and real-time computation, this might violate the memory budget for time critical
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applications. Under such scenarios, we also provide a lightweight offline approximation for the

optimal CV coefficient without adding any additional textures.

The main contribution is summarized as below:

• A unified subsurface scattering model for efficient subsurface scattering anywhere.

• Derived exponential moving covariance matrix as an extension to the largely adopted EWMA

covariance estimator.

• An online sample count estimation algorithm jointly estimated with optimal CV coefficient

estimation to remove temporal influence.

• A lightweight CV without adding any extra textures.

2 RELATED WORK

Real-time Subsurface scattering. The major enabler for real-time subsurface scattering is the dipole

diffuse reflectance profile [Jensen et al. 2001]. There are several fast approximations for real-time

applications using diffusion in texture space [d’Eon and Luebke 2007] or screen space [Jimenez et al.

2009, 2015], or pre-integration [Penner and Borshukov 2011]. More recently, Burley fit Monte-Carlo

data to produce a simple analytic importance sampling function [Burley 2015; Christensen and

Burley 2015], which has led to more recent work in screen space with pre-calculated sampling

[Golubev 2018] or adaptive sampling [Xie et al. 2020]. In this paper, we propose a unified model

for importance sampling function based subsurface scattering by separating diffuse and distant

scattering. It reduces to 0 distant scattering spp for sub-pixel scattering distances.

Adaptive sampling. Adaptive sampling is a sampling technique to allocate more samples in re-

gions with high variation [Pharr et al. 2016]. It enables faster converging than uniform sampling

[Dammertz et al. 2010; Moon et al. 2014]. However, the major drawback is if the number of the

initial pilot samples used to measure variation is small, the result would be biased [Kirk and Arvo

1991]. This is also the dilemma that prevents the adoption of adaptive sampling in real-time render-

ing - too many pilots result in less performance, and too few results in bias. Single pass variance

guiding (SPVG) [Xie et al. 2020] introduced adaptive subsurface sampling for real-time rendering by

reusing bandwidth-friendly history measures stored in a single texture. However, the performance

is hindered when there are dynamic lighting changes, which contribute to the variance, causing

an overestimate in the number of samples required. Our paper addresses this issue, with control

variates mitigating the temporal variance effect on sample count estimation.

Control variates. Control variates is a variance reduction technique that decomposes a Monte-

Carlo integration into the sum of a known integral with some scaling coefficient and a more

easily estimated residual [Ripley 2009]. It has been studied and applied in many fields, like finance

[Alexander 1999], operations research [Hesterberg and Nelson 1998; Nelson 1990], and computer

networks [Lavenberg et al. 1982]. It requires an estimation of the optimal CV coefficient. In computer

graphics, CV has been used in offline rendering applications with a pre-defined constant CV

coefficient for main part separation (to separate out a simplified estimate, e.g., residual ratio

tracking [Novák et al. 2014], and for multiple correlated sampling [Szécsi et al. 2004]). Finding the

optimal CV coefficient has also been explored through penalized least squares[Fan et al. 2006],

iterative estimators [Kondapaneni et al. 2019; Rousselle et al. 2016], and deep learning [Müller et al.

2020]. However, no existing research provides any guidance or applications for real-time rendering

where the time budget per frame is only several milliseconds and we cannot afford those expensive

calculations. Moreover, the goal here is slightly different - to reduce the monitored variance due to

temporal changes instead of to reduce the MC estimator’s variance as those prior techniques do in

static scenes. The monitored variance is then used for sample count estimation in real-time adaptive

sampling. In this paper, we propose such an online CV coefficient estimation algorithm based on a
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novel online covariance matrix formula. We also provide a constant lightweight approximation in

the spirit of main part separation for easy adoption.

Online Covariance. Covariance is a fundamental concept in computational statistics and has great

applications in many fields. When memory is limited, it is critical to have a single pass online

algorithm. Welford [1962] proposed an online single pass algorithm to calculate the overall co-

variance numerically when each value is equally weighted. In a real-time time-variant system,

weighted covariance that favors latest results are used to track temporal changes. Two notable

examples are the prediction error covariance matrix update in the Kalman filter [Welch et al. 1995]

with varying weights, which is frequently used in control systems, and the EWMA covariance

estimator [Guldimann et al. 1995; Tsay 2005] in finance with constant weights. In this paper, we

exploit the boundary of second case. We propose an online exponential moving covariance matrix

that is mathematically derived from the weighted covariance matrix with inspiration from expo-

nential moving variance [Finch 2009]. We also provide its relationship to the well-known EWMA

covariance estimator. Moreover, we demonstrate how temporal variance can be removed during

the monitoring.
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Fig. 2. Temporal instability leads to sample count over-estimation with real-time adaptive sampling. Diffuse

lighting on a 1D surface is shown in (a) and (f). During subsurface scattering sampling, when lighting is

temporally stable (b), the estimated sample count (d) leads to lighting (c) with a variance close to target

variance 10−4 (e). When lighting is not stable (g), although we can get high quality lighting (h), 𝑟𝑚𝑠𝑒 = .0028,

the sample count(i) is over estimated because of temporal variance in (j). Temporal instability induces 242%

(i) as many samples as that shown in (d) on average in this example. The induced calculation and bandwidth

demands might threaten the performance with real-time adaptive sampling.

3 BACKGROUND

We briefly summarize the main concepts of subsurface scattering, real-time adaptive sampling, and

control variates.

3.1 Subsurface scattering

In subsurface scattering, the outgoing radiance at 𝑝 ∈ 𝜕Ω has

𝐿𝑜 (𝑝,𝜔𝑜 ) =
∫

𝜕Ω

∫

S2

𝐿𝑖 (𝑞,𝜔𝑖 )𝑆 (𝑞,𝜔𝑖 , 𝑝, 𝜔𝑜 )𝑑𝜔𝑖𝑑𝑞, (𝑞 ∈ 𝜕Ω), (1)
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where the bidirectional scattering-subsurface reflectance distribution function (BSSRDF), 𝑆 (·), is
simplified in real-time rendering as

𝑆 (𝑞,𝜔𝑖 , 𝑝, 𝜔𝑜 ) = 𝐶 𝐹𝑡 (𝑞,𝜔𝑖 )𝑅(𝑟𝑞)𝐹𝑡 (𝑝,𝜔𝑜 ), (2)

where 𝑟𝑞 = | |𝑝−𝑞 | |, 𝑅(·) is the diffuse reflectance profile (or diffusion profile), 𝐹𝑡 (·) is the directional
Fresnel transmission term, and C is a constant. This simplification holds only when 𝑆 is radially

symmetric in a homogeneous semi-infinite planar medium. Then, the radiance function becomes:

𝐿𝑜 (𝑝,𝜔𝑜 ) =
∫

𝜕Ω

𝑅(𝑟𝑞) · b (𝑝, 𝑞, 𝜔𝑜 ) · 𝑑𝑞 (3)

b (𝑝, 𝑞, 𝜔𝑜 ) =
∫

S2

𝐶𝐹𝑡 (𝑝,𝜔𝑜 )𝐹𝑡 (𝑞,𝜔𝑖 )𝐿𝑖 (𝑞,𝜔𝑖 )⟨𝜔𝑖 , 𝑛𝑞⟩𝑑𝜔𝑖 , (4)

where b (𝑝, 𝑞, 𝜔𝑜 ) is the lighting contribution at 𝑝 from 𝑞 with an outgoing direction of 𝜔𝑜 . It

can be pre-integrated in deferred rendering. Since textures are discrete, we denote the discrete

pre-integrated lighting texture as 𝐵(𝑝, 𝑞, 𝜔𝑜 ).

3.2 Real-time adaptive sampling

The adaptive sampling algorithm [Xie et al. 2020] has two steps: 1) history update and 2) sample

count estimation. For an image plane location 𝑝 , the temporal update functions at time 𝑖 are:

𝜇𝑖 = (1 − 𝜂)𝜇𝑖−1 + 𝜂S(𝑝𝑖 ) (5)

𝜎2

𝑖 = (1 − 𝜂)𝜎2

𝑖−1 + 𝜂 (1 − 𝜂) (S(𝑝𝑖 ) − 𝜇𝑖−1)2 (6)

𝑛𝑖 = (1 − 𝜂)𝑛𝑖−1 + 𝜂𝑛𝑖 (7)

Eq. 5ś7 update the shading mean, variance and sample count mean respectively with exponential

moving coefficient 𝜂 specified by the user for the corresponding texture cache location 𝑝𝑖 . S(·) is
the luminance shading function to compact history,H = (𝜇𝑖 , 𝜎2

𝑖 , 𝑛𝑖 ), into one texture. In this paper,

we mitigate temporal variance with CV in Eq. 6.

To estimate the actual samples required to reach the target quality level 𝜎2

0
, the estimated sample

count has:

�̂�𝑖 = 𝜅 · Δ(𝑖) + 𝐸 (𝑛𝑖 ), 𝜅 ∈ [0, 1] (8)

Δ(𝑖) =
(𝜎2

𝑖−1 − 𝜎2

0
)

𝜎2

0

· 𝑛𝑖−1 · (2/𝜂 − 2) (9)

𝐸 (𝑛𝑖 ) = 𝜎2

𝑖−1/𝜎2

0
· 𝑛𝑖−1 (10)

where the control factor 𝜅 limits the correction term (Eq. 9) to favor convergence (𝜅 = 1) or

performance (𝜅 = 0). �̂�𝑖 is then clamped to prevent bias due to undersampling, and meet the time

budget.

3.3 Control variates

In the rendering literature, control variates (CV) has been used to increase Monte Carlo (MC)

rendering efficiency. The basic idea is to modify the original function with a known integral

corrected by a coefficient over a spatial domain (e.g., 2D surface or 3D Volume). In this paper, we

deal with temporal change for sample estimation. Instead of working in space domain, we extend

the concept to time domain to address time-variant instability. This is slightly different from prior
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Table 1. Selected Symbols

Symbol Description

H Real-time adaptive sampling history

𝜂 Exponential moving coefficient

𝜎2

0
Target variance level for adaptive sampling

𝑛 Sample count for total scattering

𝑚 Sample count for distant scattering

J Control Variates history

𝛼 Control Variates coefficient

𝑔(𝑡) Control variable at time 𝑡

𝐺 (𝑡) Integration of 𝑔(𝑡), a known constant

value at time 𝑡 that varies according to time.

𝑅(𝑟 ) Diffuse reflectance profile

b (𝑝, 𝑞, 𝜔𝑜 ) Lighting contribution at point 𝑝 from point 𝑞 for direction 𝜔𝑜

b (𝑡) Lighting contribution at point 𝑝 from 𝑝 at time 𝑡

B (𝑝, 𝑞, 𝜔𝑜 ) Discrete pre-integrated lighting texture for b (𝑝, 𝑞, 𝜔𝑜 )
B (𝑡) Pre-integrated lighting at texture point 𝑝 at time 𝑡

𝛾 Distant scattering energy ratio

techniques that minimize MC estimator variance in static scenes. The modified formula is:

𝐹 (𝑥, 𝑡) = 𝛼 (𝑥, 𝑡) ·𝐺 (𝑥, 𝑡)+
∫

𝑦∈D
𝑓 (𝑥,𝑦, 𝑡) − 𝛼 (𝑥, 𝑡) · 𝑔(𝑥,𝑦, 𝑡)𝑑𝑦. (11)

where 𝐺 (𝑥, 𝑡) =
∫
𝑦∈D 𝑔(𝑥,𝑦, 𝑡)𝑑𝑦 and the optimal CV coefficient has 𝛼 = Cov(𝑓 , 𝑔)/Var (𝑔) [Laven-

berg et al. 1982]. In non-real-time rendering, time can be regarded as another dimension. If 𝑥 ∈ R𝑛 ,
then (𝑥, 𝑡) ∈ R𝑛+1. However, in real-time rendering only limited history can be accessed at 𝑡 for

performance and storage, and no forward time evaluation is possible. In real-time adaptive sampling,

only one history texture is utilized, we explore in the same spirit to make control variates possible

in real-time rendering.

4 MOTIVATING EXAMPLE

In real-time adaptive sampling, there are two major contributions to the variance: spatial variance

due to MC sampling, and temporal variance due to lighting change.

Spatial variance. Fig. 2(a)ś(e) shows a 1D example of spatial variance with stable lighting over 2

seconds. For lighting gradient change region around 𝑥 ∈ [1, 2], the sample count is estimated to

the max budget allowed at 64 spp to minimize the variance to 𝜎2

0
= 10

−4 as shown in Fig. 2(e).

Temporal variance. Dynamic lighting introduces temporal variance. For example, it could be

caused by gunshots, dynamic lighting particles, or moving objects that occlude/dis-occlude lighting

randomly for a shading point. This variance is present as we use temporal histories. It leads to

sample count overestimation. We demonstrate it in the same setup in Fig. 2(f)ś(j), lighting intensity

changes over time is shown in Fig. 2(g). It leads to high sample count Fig. 2(i) across space to reduce

the high variance Fig. 2(j) induced by temporal lighting changes. It leads to sample count increase

by 242% in this example. It is critical to mitigate the effect of dynamic lighting changes for real-time

performance.
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Fig. 3. Subsurface scattering with sampling resolution.

5 UNIFICATION OF SCATTERING

Scattering decomposition. Due to the resolution of 𝐵(𝑝, 𝑞, 𝜔𝑜 ) in practice, the sampling resolution is

bounded by texel size t = (𝑤,ℎ). Denote the diffuse scattering sampling radius as 𝑟0 = 𝑍
√
𝑤2 + ℎ2/2,

where 𝑍 is the depth of 𝑝 , we divide the region into a direct scattering (or diffuse) region 𝜕Ω𝑑 , and

distant scattering region 𝜕Ω𝑠 , 𝜕Ω = 𝜕Ω𝑑 ∪ 𝜕Ω𝑠 as shown in Fig. 3. From Eq. 3 we have:

𝐿𝑜 (𝑝,𝜔𝑜 ) =𝐿𝑑 (𝑝,𝜔𝑜 ) + 𝐿𝑠 (𝑝,𝜔𝑜 ) (12)

=

∫

𝜕Ω𝑑

𝑅(𝑟𝑞)b (𝑝, 𝑞, 𝜔𝑜 )𝑑𝑞 +
∫

𝜕Ω𝑠

𝑅(𝑟𝑞)b (𝑝, 𝑞, 𝜔𝑜 )𝑑𝑞 (13)

≈𝐵(𝑝, 𝑝, 𝜔𝑜 ) · cdf (𝑟0) +
∫

𝜕Ω𝑠

𝑅(𝑟𝑞)b (𝑝, 𝑞, 𝜔𝑜 )𝑑𝑞 (14)

where the first term in Eq. 14 is the analytic result after a change of variables from the Cartesian

coordinate system to the polar coordinate system with the assumption that the covered region of

direct scattering has constant lighting and it can be approximated by the discrete representation

𝐵(𝑝, 𝑝, 𝜔𝑜 ). Because we have
∫ 𝑟0

0
2𝜋𝑟𝑅(𝑟 )𝑑𝑟 = 𝐴 · 𝑐𝑑 𝑓 (𝑟0) by Christensen and Burley [2015]’s work

where 𝐴 is the surface albedo. We ignore this constant for simplicity. It can be introduced back

with a direct multiplication after subsurface scattering [Xie et al. 2020]. If we deploy importance

sampling for this formula with 𝑟𝑞 ∼ pdf (𝑟 ), and the corresponding cumulative density function

(cdf ) inverse 𝑔(𝜉) = cdf −1 (𝜉), the numerical approximation is

𝐸 (𝐿𝑜 (𝑝,𝜔𝑜 )) ≈ 𝐵(𝑝, 𝑝, 𝜔𝑜 ) · cdf (𝑟0)+
1

𝑚

𝑛∑︁

𝑖=𝑛−𝑚+1

2𝜋𝑟𝑞𝑖𝑅(𝑟𝑞𝑖 )𝐵(𝑝, 𝑞𝑖 , 𝜔𝑜 )
pdf (𝑟𝑞𝑖 )

(
1 − cdf (𝑟0)

)
. (15)

where 𝑟𝑞𝑖 = 𝑔((1 − 𝜉𝑖 ) · cdf (𝑟0) + 𝜉𝑖 ), 𝑛 is the sample count for subsurface scattering, and𝑚 =

𝑛(1 − 𝑐𝑑 𝑓 (𝑟0)) is the sample count for distant scattering. In this formulation, we directly use the

pre-integrated lighting for diffuse, and weight between diffuse and scattering based on cdf .

Generalization. With Eq. 15, we summarize the real-time subsurface scattering model for a given

𝜔𝑜 as:

𝐿𝑜 (𝑝) = (1 − 𝛾) · 𝐵(𝑝, 𝑝) + 𝛾 · L𝑠 (𝑝, 𝑅𝐹 , 𝜕Ω𝑠 ) (16)
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where 𝛾 is the distant scattering energy ratio to blend the pre-integrated direct lighting and

un-normalized distant subsurface scattering L𝑠 (𝑝, 𝑆𝐹 , 𝜕Ω𝑠 ), 𝑅𝐹 is the corresponding subsurface

scattering profile. Table 2 shows the realization of 𝛾 and 𝑅𝐹 for different models.

Table 2. The realization of different subsurface scattering models.

𝛾 𝑅𝐹 Reference

Normalized Burley 1 − cdf 𝑏 (𝑟0) 𝑅𝑏 [Burley 2015]

Dipole 1 − cdf 𝑑 (𝑟0) 𝑅𝑑,𝑠𝑠+𝑚𝑠 [Jensen et al. 2001]

Artist Friendly Dipole 𝑐 𝑅𝑑,𝑚𝑠 − 𝑅𝐺0
[Jimenez et al. 2015]

Specialization. The generalization provides us a way to reason existing subsurface scattering model

and whether it is applied in the same way for real-time rendering. For example, the artist friendly

separable subsurface scattering [Jimenez et al. 2015] uses a constant blending factor 𝑐 (strength) and

a modified profile �̃�𝑑 = 𝑅𝑑,𝑚𝑠 − 𝑅𝐺0
where 𝑅𝐺0

is the Gaussian approximations with the minimal

variance. The result is consistent with offline dipole models, only when:

𝑐 =
(1 − cdf 𝑑 (𝑟0)) · (𝐵(𝑝, 𝑝) − L𝑠 (𝑝, 𝑅𝑑,𝑠𝑠+𝑚𝑠 , 𝜕Ω𝑠 ))

𝐵(𝑝, 𝑝) − L𝑠 (𝑝, 𝑅𝑑 , 𝜕Ω𝑠 )
(17)

Unified representation. Since 𝛾 is dependent on parameters of the CDF (e.g., diffuse mean free path

for Burley), resolution and depth, we are able to enable 0 spp for distant scattering when most

scattering is less or equal to one pixel as

�̂� (𝑖) =

{
0 𝛾 < 𝜖𝑢

�̂�𝑖 · 𝛾 otherwise
(18)

where 𝜖𝑢 is a small constant to determine when distant subsurface scattering is not performed.

Fig. 4 shows an example of scattering regions with different 𝜖𝑢 . Most of the walls do not need

distant scattering when 𝜖𝑢 = 0.05. Note that the estimator becomes biased due to energy loss when

𝜖𝑢 > 0. As with other uses of biased estimators in rendering, this can remove unnecessary samples

for distant scattering and variance tracking, but needs to be used carefully.

(a) Scene (b) 𝜖𝑢 = 0.0 (c) 𝜖𝑢 = 0.05

Fig. 4. Direct/diffuse region (black) and direct+distant (white) (b,c) for scene (a). The vertical line on the wall

(c) is the boundary where only 5% of scattering energy is from distant scattering.

With this formulation, instead of estimating �̂�𝑖 first and then calculating the sample count𝑚𝑖 for

distant scattering, we can directly estimate �̂�𝑖 with Eq. 8 with the history tupleH𝑖 = (𝜇𝑖 , 𝜎2

𝑖 , �̄�𝑖 ).
Then the target quality 𝜎2

0
is set for distant scattering. This switch also implies that the variance

contribution of the direct scattering due to temporal change (e.g., jittering and lighting change) has

been removed. It will not affect the sample count estimation.
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6 CONTROL VARIATES

We use CV to reduce the influence of temporal variance. Starting from Eq. 11 and 14, we introduce

the control variable at time 𝑡 for position 𝑝 as 𝑔(𝑞, 𝑡) where 𝑝 is neglected for simplicity. Then we

have time dimension in distant subsurface scattering as

𝐿𝑠 (𝑡) = 𝛼 (𝑡) ·𝐺 (𝑡) +
∫

𝜕Ω𝑠

𝑅(𝑟𝑞)b (𝑞, 𝑡) − 𝛼 (𝑡) · 𝑔(𝑞, 𝑡)𝑑𝑞
︸                                       ︷︷                                       ︸

𝑅𝑒𝑠 (𝑡 )

(19)

Denote 𝑓 (𝑞, 𝑡) = 𝑅(𝑟𝑞)b (𝑞, 𝑡), and suppose we have a realization of 𝑔(𝑞, 𝑡) whose known integral

is 𝐺 (𝑡), which captures most of the temporal varying component. The optimal coefficient can be

estimated with 𝛼∗
= Cov(𝑓 , 𝑔)/Var (𝑔) after sampling using the𝑚𝑡 samples. However, we might not

have enough samples in one frame to get a good estimation. Instead, we use the covariance of the

two batch means to estimate the CV coefficient and use history to improve the estimation, because

we have Cov(𝑋,𝑌 ) = 𝑛Cov(𝑋,𝑌 ) (see supplementary). It leads to 𝛼∗
= Cov(𝑋,𝑌 )/Var (𝑌 ). This

enables us to estimate the coefficient with temporal observations over time with online covariance

estimation instead of just in a single frame. Then, the actual sample count could be estimated based

on the residual component 𝑅𝑒𝑠 (𝑡) with minimal temporal variance.

6.1 Theory

Before running into the detail of the online updating algorithm, we provide a simplified theory to

guide the algorithm design. We assume that the temporal change component can be independently

separated out from the function to integrate 𝑓 (𝑞, 𝑡) and the control variable 𝑔(𝑞, 𝑡).
Namely, we have three random variables 𝑇 , 𝐹 , and 𝐺 . 𝑇𝐹 is the function to estimate, 𝑇𝐺 is the

control variable. Then the general optimal CV coefficient is

𝛼∗
=
Cov(𝑇𝐹,𝑇𝐺)
Var (𝑇𝐺) . (20)

When 𝑇 is independent from 𝐹 and 𝐺 , the variance for ⟨𝑇𝐹 ⟩ and the residual variance are

Var (⟨𝑇𝐹 ⟩) = Var (𝑇 (𝐹 − 𝛼𝐺)) + Var (𝛼𝑇𝐺) + 2Cov(𝑇 (𝐹 − 𝛼𝐺), 𝛼𝑇𝐺) (21)

Var (𝑇 (𝐹 − 𝛼𝐺)) = 𝐸 (𝑇 )2Var (𝐹 − 𝛼𝐺) + Var (𝑇 )Var (𝐹 − 𝛼𝐺) + Var (𝑇 )𝐸 (𝐹 − 𝛼𝐺)2 (22)

where ⟨𝑇𝐹 ⟩ is an unbiased estimator. The goal in this paper is to reduce the variance contribution

of 𝑇 to 𝑉 (⟨𝑇𝐹 ⟩) during variance tracking. For distant subsurface scattering as illustrated in Eq. 19

when the lighting intensity 𝑇 = 𝐼 (𝑡) is independent from the scattering function 𝐹 and the control

variable 𝐺 , we have

𝐹 =
𝐿𝑠 (𝑡𝑟 )
𝐼 (𝑡𝑟 )

=

∫

𝜕Ω𝑠

𝑅(𝑟𝑞)
b (𝑞, 𝑡𝑟 )
𝐼 (𝑡𝑟 )

𝑑𝑞, 𝐺 =
𝐺 (𝑡𝑟 )
𝐼 (𝑡𝑟 )

=

∫

𝜕Ω𝑠

𝑔(𝑞, 𝑡𝑟 )
𝐼 (𝑡𝑟 )

𝑑𝑞, (23)

𝑇𝐹 = 𝐿𝑠 (𝑡) = 𝐼 (𝑡)𝐿𝑠 (𝑡𝑟 )
𝐼 (𝑡𝑟 )

, 𝑇𝐺 = 𝐺 (𝑡) = 𝐼 (𝑡)𝐺 (𝑡𝑟 )
𝐼 (𝑡𝑟 )

, (24)

where 𝐼 (𝑡𝑟 ) is a reference intensity 𝐼 (𝑡𝑟 ) ≠ 0 at time 𝑡𝑟 . This assumption holds when the intensity

of all lights (e.g., point light, directional light and spotlight) are controlled by a single intensity

parameter 𝐼 (𝑡). Because we have a linear relationship between the intensity of incoming lights and

the exitance radiance as shown in Eq. 3 and Eq. 4. Although 𝑔(𝑞, 𝑡) is unknown, it does not affect
the reasoning in this section. Please refer to Section 6.2 for a concrete realization.
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10 Tiantian Xie and Marc Olano

6.1.1 In-frame standard control variable. In standard CV, the control variable requires Monte Carlo

sampling and 𝐸 (𝑇𝐺) is expected to be known. Since𝑇 is independent, we have 𝐸 (𝑇𝐺) = 𝐸 (𝑇 )𝐸 (𝐺).
However, 𝐸 (𝑇 ) is unknown. Even though our proposed algorithm can estimate 𝐸 (𝑇 ) to some extent,

the MC sampling of 𝐺 brings in variance, which makes the estimation more vulnerable. Fig. 5

illustrates the basic idea by using our CV coefficient updating algorithm. To introduce temporal

dynamics, the intensity follows a sine function. It demonstrates an ability to adjust 𝛼 under both

static and dynamic lighting (see supplementary document).

0 0.5 1

y

0

0.5

1

(a) 𝑓 and 𝑔 (b) 𝛼∗ ≈ 0.477 (c) 𝛼∗ ≈ 1.388

Fig. 5. Illustration of our novel application of CV. For function 𝑓 and𝑔 (a), a standard CV coefficient estimation

results in (b) with a residual vulnerable to temporal variance. However, our method can find the coefficient

that leads to (b) during time-invariant scenarios, but to (c) during time-variant scenarios, where the residual

is near zero. The residual variance is less vulnerable to temporal change based on Eq. 22.

Evenworse, as𝑇𝐺 and𝑇𝐹 need to be sampled in a correlatedway. This oftenmeans the bandwidth

demand doubles in real-time rendering. Monte Carlo sampling leads to further cache incoherence.

This is against the idea of real-time adaptive sampling, where bandwidth demand is minimized

by reducing sample count with extremely low overhead. Because of this, applying standard CV to

maintain stability for real-time adaptive sampling does not seem to be an attractive feature even

when we have demonstrated some capability in Fig. 5.

6.1.2 In-frame constant control variable. To deal with the bandwidth demand hazard, a known

in-frame constant can be used as the control variable. Namely, 𝐸 (𝐺) is constant with 𝑉 (𝐺) = 0.

This only adds a low overhead as one texture fetch. Under this condition, however, we do have a

valid best CV coefficient derived from Eq. 20 as:

𝛼∗
=
𝐸 (𝐹 )
𝐸 (𝐺) =

𝐸 (𝑇𝐹 )
𝐸 (𝑇𝐺) . (25)

With this formula, the optimal CV coefficient for the example in Fig. 5 has 𝛼∗
=

∫
1

0

1

1+𝑦𝑑𝑦∫
1

0
1−𝑦𝑑𝑦

= 𝑙𝑛(4) ≈
1.386, and 𝐸 (𝐹 − 𝛼∗𝐺) = 0. Then Eq. 21 and Eq. 22 simplify to

Var (⟨𝑇𝐹 ⟩) = Var (𝑇 (𝐹 − 𝛼∗𝐺)) + Var (𝑇 )𝐸 (𝐹 )2 (26)

Var (𝑇 (𝐹 − 𝛼∗𝐺)) = (Var (𝑇 ) + 𝐸 (𝑇 )2)Var (𝐹 ) (27)

This analytic CV coefficient is the reason why the CV coefficient in Fig. 5 under dynamic lighting

is approximately 1.386. When (𝐹 − 𝛼𝐺) → 0, the right term diminishes in both Eq. 21 and Eq. 22,

leaving only one controllable variance Var (𝐹 ) in the residual variance that should be considered for

variance tracking. More specifically for subsurface scattering with Eq. 23 and Eq. 24, this optimal
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Real-time Subsurface Control Variates: Temporally Stable Adaptive Sampling 11

CV coefficient is

𝛼∗ (𝑡) = 𝐸 (𝐿𝑠 (𝑡𝑟 ))
𝐸 (𝐺 (𝑡𝑟 ))

=
𝐸 (𝐼 (𝑡)𝐿𝑠 (𝑡𝑟 ))
𝐸 (𝐼 (𝑡)𝐺 (𝑡𝑟 ))

=
𝐸 (𝐿𝑠 (𝑡))
𝐺 (𝑡) (28)

where𝐺 (𝑡) is constant at frame 𝑡 and 𝐼 (𝑡) ≠ 0. Then, our online algorithm for subsurface scattering

is designed with the following guidance:

(1) Use analytic optimal CV from Eq. 25 for regions where intensity dynamics 𝑇 is independent

from 𝐹 and 𝐺 .

(2) Adaptively switch to use online estimation of Eq. 20 to estimate the CV coefficient when the

assumption does not hold.

6.2 Online solution

In this section, a novel online covariance estimation method is first introduced. We then provide our

online CV coefficient and sample count joint estimation algorithm. To provide a concrete example

for 𝛼∗ estimation that separates out time-variant signal, we select one reasonable realization of 𝑓 , 𝑔

as

𝑓 (𝑞, 𝑡) = 𝑅(𝑟𝑞)b (𝑞, 𝑡), 𝑓 ≈𝛾L𝑠 (𝑡) (29)

𝑔(𝑞, 𝑡) = 𝑅(𝑟𝑞)b (𝑡), 𝑔=𝐺 (𝑡) = 𝛾𝐵(𝑡) (30)

Note that 𝑓 and 𝑔 are the MC sampling result of the integration at time 𝑡 . They are not necessarily

equal to the analytic integration if the control variable requires Monte Carlo sampling. However, we

use in-frame constant control variable to maintain temporal stability and deal with the bandwidth

hazard. Therefore,𝑔 = 𝐺 (𝑡). b (𝑡) is the lighting contribution at 𝑝 itself at time 𝑡 . It leads to a constant

integration of 𝛾𝐵(𝑡), where 𝐵(𝑡) is a texture fetch directly at texel 𝑝 in the pre-integrated lighting

texture. Since the algorithm will run for each 𝑝 , we ignore 𝑝 for simplicity (some important symbols

are listed in Table 1). Note that this fetch can also be queried from different level of details to add

in the correlation of temporal intensity change of surrounding lighting for further optimization.

Exploring this is outside the scope of this paper. With this realization in large flat lighting region,

Eq. 28 leads to

𝛼∗
= 1, (31)

the main part separation, and we have zero variance during dynamic lighting.

6.2.1 Exponential moving covariance (EMC). For two random variable 𝑋 , 𝑌 that are incrementally

observed according to time as {𝑥0, 𝑥1..., 𝑥𝑡 } and {𝑦0, 𝑦1, ..., 𝑦𝑡 } with a constant weight of 𝜂, the

exponential moving covariance between them at time 𝑡 (𝑡 ≥ 1) is:

𝐶𝑜𝑣𝑡 (𝑋,𝑌 ) =(1 − 𝜂)𝐶𝑜𝑣𝑡−1 (𝑋,𝑌 )+
𝜂 (1 − 𝜂) (𝑥𝑡 − 𝜇𝑡−1) (𝑦𝑡 − 𝜐𝑡−1) (32)

where 𝑥𝑡 , 𝑦𝑡 are the current observation, 𝜇𝑡−1, 𝜐𝑡−1 are the corresponding exponential moving

average at 𝑡 − 1, and 𝐶𝑜𝑣0 (𝑋,𝑌 ) = 0. Since there is no reference in the scientific literature, we

provide a detailed proof in the supplementary material. The new covariance formulation enables

direct calculation of CV coefficient as 𝛼𝑡 (𝑋,𝑌 ) = 𝐶𝑜𝑣𝑡 (𝑋,𝑌 )/𝑉𝑎𝑟𝑡 (𝑌 ). Then, we can derive a more

generalized matrix form.
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Fig. 6. The online control variates based adaptive sampling diagram at frame time 𝑡 . With sample count

history H𝑡−1 and CV history J𝑡−1, we estimate the sample count required at time 𝑡 based on the control

variates residual, trying to meet the target variance level 𝜎2
0
.

6.2.2 Exponential moving covariance matrix (EMCM). If we have a time series vector ZZZ𝑡 ∈ R𝑛×1
with the exponential moving average at time 𝑡 as 𝜁𝜁𝜁 𝑡 ∈ R𝑛×1, then the covariance matrix ΣΣΣ𝑡 (𝑡 ≥ 1) is

ΣΣΣ𝑡 = (1 − 𝜂)ΣΣΣ𝑡−1 + 𝜂 (1 − 𝜂) (ZZZ𝑡 − 𝜁𝜁𝜁 𝑡−1) (ZZZ𝑡 − 𝜁𝜁𝜁 𝑡−1)𝑇 (33)

whereΣΣΣ0 = 0
𝑛×𝑛 . This is different fromEWMAcovariance estimator used in stock analysis[Guldimann

et al. 1995] as

Σ̃ΣΣ𝑡 = (1 − 𝜂)Σ̃ΣΣ𝑡−1 + 𝜂 (ZZZ𝑡 − 𝜁𝜁𝜁 𝑡−1) (ZZZ𝑡 − 𝜁𝜁𝜁 𝑡−1)𝑇 (34)

The estimator uses the previous history at 𝑡 − 1 to predict the value at 𝑡 , solving for the estimated

covariance between 𝑋,𝑌 :

C̃ov𝑡 (𝑋,𝑌 ) ≈ 𝐸𝑡 ((𝑋 − 𝜇𝑡−1) (𝑌 − 𝜐𝑡−1)) (35)

where 𝐸𝑡 (·) calculates the exponential weighted average at 𝑡 . While the equation we resolve is to

calculate the covariance as

𝐶𝑜𝑣𝑡 (𝑋,𝑌 ) = 𝐸𝑡 ((𝑋 − 𝜇𝑡 ) (𝑌 − 𝜐𝑡 )) (36)

(see supplementary). For rapid changing frames with dynamic lighting, it is preferable to have a

direct calculation instead of prediction to get the CV coefficient. Then, the coefficient matrix is

AAA𝑡 = 𝑑𝑖𝑎𝑔(∑𝑛
1 (e𝑇𝑖 ΣΣΣ𝑡e𝑖 )e𝑖 )−1ΣΣΣ𝑡 where e𝑖 is the 𝑖th matrix basis, and 𝑑𝑖𝑎𝑔(·) creates the diagonal

matrix from a vector.

6.2.3 Coefficient boundary. Since the numerical estimation might lead to instability (e.g., oscillating

larger or being NaN according to time), we bound the range of CV coefficient for subsurface

scattering with two considerations:

(1) Both diffuse, 𝐵, and distant scattering results are non-negative, the maximum residual cannot

be larger than the distant scattering result 𝑓 , thus 𝑅𝑒𝑠𝑚𝑎𝑥 ≤ 𝑓 .

(2) Residual can be negative, however, we anticipate that the minimal residual can be raised to

non-negative by 𝐺 (𝑡) as 𝑅𝑒𝑠𝑚𝑖𝑛 + 𝑔 ≥ 0. Thus, we have 𝑅𝑒𝑠𝑚𝑖𝑛 ≥ −𝑔.
With 𝑅𝑒𝑠 = 𝑓 − 𝛼 · 𝑔 we have the bound 𝐷 ∈ [0, (𝑓 + 𝑔)/𝑔]. If 𝛼 is clamped by 𝐷 , we denote it as

𝛼 |𝐷 . Since 𝐶𝑜𝑣𝑡 (𝑓 , 𝑔) and Var𝑡 (𝑔) can be zero for hard shadows, to deal with this issue, we added

a small constant factor 𝜖𝛼 as 𝛼𝑡 =
𝐶𝑜𝑣𝑡 (𝑓 ,𝑔)+𝜖𝛼
Var𝑡 (𝑔)+𝜖𝛼 . In this way, when both variables become zero, it

could simplify to main part separation (𝛼𝑡 = 1).
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Fig. 7. Sample count𝑚𝑡 estimation with online and offline CV coefficients 𝛼∗𝑡 estimation.

6.2.4 Online joint estimation algorithm. With the ability to calculate covariance matrix online, the

online algorithm to estimate sample count𝑚𝑡 as well as the optimal CV coefficient 𝛼𝑡 is provided

in this section. Fig. 6 shows an overview of the online control variates based adaptive sampling

diagram. It composes of three main parts: i) Sample count estimation, ii) CV coefficient estimation,

and iii) Estimation history update.

Algorithm 1 Sample Count Estimation

Require: H𝑡−1, 𝛾, 𝜖𝑢, 𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥

1: if 𝛾 < 𝜖𝑢 then

2: 𝑚𝑡 = 0

3: else

4: Update �̂�𝑡 with Eq. 8

5: 𝑚𝑡 = �̂�𝑡 | [𝛽𝑚𝑖𝑛,𝛽𝑚𝑎𝑥 ]
6: end if

7: return𝑚𝑡

Sample count estimation. As shown in Algorithm 1. if most contributions come from direct

scattering (Eq. 18), there is no need to perform distant scattering (Line 1-2). Otherwise, it will use

the real-time adaptive sampling algorithm to estimate sample count in frame 𝑡 (Line 4). To have

adequate observations and also consider the computing capability, the estimated sample count is

restricted within [𝛽𝑚𝑖𝑛, 𝛽𝑚𝑎𝑥 ] (Line 5).

Algorithm 2 CV Coefficient 𝛼∗
𝑡 Estimation

Require: ΣΣΣ𝑡−1, 𝜖𝛼 , 𝐷

1: 𝛼𝑡−1 =
ΣΣΣ𝑡−1 .𝑥𝑦+𝜖𝛼
ΣΣΣ𝑡−1 .𝑦𝑦+𝜖𝛼 |𝐷

2: return 𝛼𝑡−1
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CV coefficient estimation. With the proposed exponential moving covariance matrix, ΣΣΣ𝑡 =(
𝑉𝑎𝑟𝑡 (𝑓 ) 𝐶𝑜𝑣𝑡 (𝑓 , 𝑔)
𝐶𝑜𝑣𝑡 (𝑔, 𝑓 ) 𝑉𝑎𝑟𝑡 (𝑔)

)
. We can easily calculate the CV coefficient at 𝑡 − 1 as 𝛼𝑡−1 = (Σ𝑡−1.𝑦𝑥 +

𝜖𝛼 )/(Σ𝑡−1 .𝑦𝑦 + 𝜖𝛼 ) (Line 1 in Algorithm 2) and make it bounded by 𝐷 to deal with instability. At

last, the coefficient solution is approximated by the coefficient at 𝑡 − 1 as 𝛼𝑡−1 (Line 2). Note that if
we use EWMA covariance estimator (Eq. 34), the coefficient would be approximated by covariance

estimator at 𝑡 − 1 using history from 𝑡 − 2. If 𝑔 is an in-frame standard control variable, another

potential solution for CV coefficient estimation is to calculate per-frame CV coefficient directly and

use exponential moving average (EMA) for a good estimation as Fig. 5(b). However, it cannot lead

to Fig. 5(c) to remove the temporal variance.

Algorithm 3 Estimation History Update

Require: H𝑡−1,𝑚𝑡 ,J𝑡−1 = (ΣΣΣ𝑡−1, 𝜻𝑛−1), 𝛼∗
𝑡 , 𝑡

1: // Sample count history update

2: S(𝑡) = 𝑅𝑒𝑠 (𝑡)
3: Update H𝑡 = (𝜇𝑡 , 𝜎2

𝑡 , �̄�𝑡 ) based on Eq. 5ś7

4: // CV coefficient history update

5: Z𝑡 = [𝑓 , 𝑔]
6: Update ΣΣΣ𝑡with Eq. 33

7: 𝜻 𝑡 = (1 − 𝜂)𝜻 𝑡−1 + 𝜂Z𝑡

8: J𝑡 = (ΣΣΣ𝑡 , 𝜁𝑡 )
9: return (H𝑡 ,J𝑡 )

Estimation history update. After sampling, we need to update the history buffer for both sample

estimation and VC coefficient estimation:1) Sample count estimation. After applying the control

variates, the value we monitor is 𝑅𝑒𝑠 (𝑡) instead of 𝐿𝑜 (𝑡). Because 𝐿𝑜 (𝑡) contains both spatial and

temporal variance, what represents the spatial variance most is 𝑅𝑒𝑠 (𝑡). So 𝑅𝑒𝑠 (𝑡) is set as the
shading result for history update (Line 1). For storage efficiency, only luminance is used for 𝑅𝑒𝑠 (𝑡).
2) CV coefficient estimation. The exponential moving covariance matrix and the exponential moving

average for 𝑓 and 𝑔 are updated between line 5-7. Note that the exponential moving coefficient for

CV can be different from adaptive sampling to reduce the variance caused by 𝛼∗
𝑡 estimation. There

are two considerations during implementation:

(1) Number of textures. Line 8 indicates that we need to store 9 parameters, which would require

three textures of floatRGBA16. ButΣΣΣ𝑡 is symmetric, andΣΣΣ𝑡 .𝑥𝑥 is not used. Thus only 7 parameters

(two textures) are actually needed to keep the history.

(2) Sampling value. Since rendering solves 𝐿𝑜 (𝑝, 𝑡), to efficient compute the monitoring value S(𝑝𝑡 )
and Z𝑡 , we can derive another formulation without calculating intermediate values as

𝑓 = 𝐿𝑜 (𝑡) − (1 − 𝛾) · 𝐵(𝑡) (37)

𝑅𝑒𝑠 (𝑡) = 𝑓 − 𝛼∗
𝑡 ·𝐺 (𝑡) (38)

Fig. 7(a)ś(l) shows an example of applying the algorithm with EWMA covariance estimator and

EMCM. The sample count and quality are close. However, we have a slightly smaller sample count

with EMCM. Moreover, the approximation of EWMA brought higher variance and covariance

changes shown between Fig. 7 (c) and (i), (b) and (h). Therefore, we select EMCM. Note that Eq. 38

uses 𝐺 (𝑡) instead of 𝑔 (no matter whether the standard or constant control variable is used) to

remove temporal variance while still keeping spatial variance to avoid under-sampling in both

static and dynamic lighting scenarios (see supplementary).
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6.3 Offline CV coefficient estimation

From the online solution, we find an approximation, 𝛼∗
𝑡 = 1, leading to an even more efficient

implementation for real-time applications.

Fig. 7(d) shows that for most regions in time, even with time-variant lighting condition, 𝛼∗
𝑡

remains 1. Fig. 7(m)ś(r) show the corresponding states if we set 𝛼∗
𝑡 = 1. The quality is a little worse

(.0031>.0028) with a reduced average sample count (-3 spp), but we can save one texture and the

corresponding calculation.

Our online solution requires two textures. When the memory capacity or bandwidth budgets are

tight, one more texture per pass might be too demanding.

Table 3. The mean metrics across all frames and the max performance ratio for adaptive sampling (AS),

adaptive sampling with Online CV coefficient (+OCV), and with constant CV coefficient (+CCV).

Sample Count (spp) Sampling Pass Time (ms) PSNR (dB)

AS +OCV +CCV
Max

ratio
AS +OCV +CCV

Max

ratio
AS +OCV +CCV

Max

Ratio

Flash lighting 61.97 29.58 26.88 x2.75 1.47 0.80 0.75 x2.79 51.19 49.55 49.43 x0.94

Regular lighting 26.51 18.32 17.82 x4.00 3.39 2.55 2.58 x3.11 47.85 47.57 47.55 x1.01

Dynamic scene 22.01 14.70 14.13 x2.02 2.02 1.54 1.52 x1.98 50.62 49.11 49.11 x0.91

7 IMPLEMENTATION AND RESULT

We implemented our algorithm in Unreal Engine 4 (UE4) in the subsurface-scattering postprocess

pass. The target quality has 𝜎2

0
= 0.0001, 𝜂 = 0.2, 𝜂𝑐𝑣 = 10

−6, 𝜅 = 0.2, 𝜖𝑢 = 0.01 and 𝜖𝛼 = 10
−6, the

sample count is clamped between 8 and 64 spp. 𝜂𝑐𝑣 is the exponential moving coefficient for CV

history update. We created three scenes to capture typical dynamic lighting changes to show how

our proposed algorithm works in whole scene subsurface scattering:

(1) Flashing lighting. Flashing light is used to simulate gunshots or lightning on human face, using

a directional light with intensity 𝐼 (𝑡) = 𝑠𝑖𝑛(2𝜋 𝑓 𝑡) + 1 with 𝑓 = 5𝐻𝑧.

(2) Regular lighting. We simulate regular lighting changes with a light switching on and off, and

flickering candle lights. The directional light is turned on/off every 3 seconds.

(3) Dynamic scene. Dynamic moving boids are added to the scene creating dynamic shadowing

when they move around a candle.

We choose to use three metrics for the evaluation.

(1) Sample count (spp). The per-frame average samples per pixel. It is calculated on subsurface

regions only.

(2) Sampling pass time (ms). The sampling pass time is only measured for the MC sampling process.

A 3rd-order median filter is applied to remove unstable measurements.

(3) PSNR (dB). The PSNR is measured on the luminance of the subsurface scattering region. The

ground truth image is captured with 1024 spp per frame.

To make the results reproducible, we use fixed random seed and UE4 Sequencer to render a standard

dynamic range (SDR) 60 frame-per-second (FPS) avi, with sample count and PSNR measured per

frame. To get the sampling pass time, the built-in csv log is used during sequencer recording. The

performance is measured with a resolution of 2560x1440p on an NVIDIA RTX 2080Ti.

Fig. 8 shows the performance and quality test results for the selected three scenes over 300

frames. For each test scene, we show the scene, two captures to demonstrate temporal dynamics,

the sample count texture for adaptive sampling, the texture with online CV, the sample count,

sampling pass time, and PSNR. Table 3 shows the corresponding average over time. Since it is very
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(a) Flashing lighting (gunshot/lightning) (b) Regular lighting (light on/off) (c) Dynamic scene (moving boids)
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Fig. 8. Real-time CV performance and quality test at resolution 2560x1440 for the three test scenes: (a)

Flashing lighting with additional snapshots at frame 101 and 108, (b) Regular lighting at 71 and 251, and (c)

Dynamic scene at 25 and 200.

important to always maintain high performance in real-time rendering, the max performance ratios

before and after adding CV are also shown.

Max performance ratio. Fig. 8(b) shows a good example when light is switching on/off. Without

control variates, the sampling pass time increases up to ×3.11 at frame 252 (7.15 ms vs. 2.33 ms)

compared to with-CV even when quality is not increased. With CV, the pass time is more stable

and friendly to real-time applications. Note that, in the sampling pass time of Fig. 8, some sudden

increase in pass time can be observed. We believe it is due to memory incoherence since the samples

are based on importance sampling.

Sample count reduction. The reason we can have better performance is that CV leads to lower

sample counts, thus less pass rendering time. During continuously frequent dynamic lighting

change (Fig. 8(a)), temporal variance leads to high sample counts (61.97 spp) and an average of 1.47

ms for the sampling pass. CV leads to consistently lower average sample count (17.82 spp) and pass

time (0.75 ms) with quality drops of 1.76 dB.
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Quality effects. We observe a slight quality drop after applying CV. the quality drops the highest

during high dynamic scenes (Fig. 8(c)) with fast moving subsurface objects, down ×0.91 when

compared with adaptive sampling alone at frame 25. However, we think the absolute PSNR is high

enough for the introduced performance.

Online vs. constant CV. The average quality is expected to be better with online CV. We tend to

have more samples during our 1D illustration example in Fig. 7 as the algorithm tends to perform

oversampling. In Fig. 8, a similar small increase in sample count is detected during our 3D scene

tests. The constant CV seems to be more efficient regarding the memory usage of the online CV in

real-time rendering.

8 CONCLUSION

In this paper, we proposed a real-time subsurface control variates algorithm to reduce sample count

demands in dynamic lighting and scenes. It minimized both regions and sample demands to perform

stable subsurface scattering with a unified representation. The CV coefficient is based on our novel

exponential moving covariance matrix, which should help in all research and application domains

that rely on accurate online exponential moving covariance matrix. A bandwidth-friendly CV

coefficient approximation is also provided for real-time rendering engine integration.
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