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We provide the detailed proof of our proposed exponential moving covariance matrix and how it is related

to the largely adopted exponential moving weighted average (EMWA) covariance estimator. It serves as the

basis for online control variates (CV) coefficient estimation for subsurface scattering with real-time adaptive

sampling. A concrete example and the corresponding theory of why we select the CV coefficient and residual

function is also provided.
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1 EXPONENTIAL MOVING COVARIANCE

To assure that the exponential moving covariance matrix is correct, we first prove the basic building

block that exponential moving covariance, is correct.

1.1 Variable-weight covariance

The derivation is based on [Finch 2009]. For exponential moving average and variance, please refer

to the original paper. Denote n observations 𝑥1, ..., 𝑥𝑛 and 𝑦1, ..., 𝑦𝑛 from two random variable 𝑥,𝑦.

The weighted means for 𝑥 and 𝑦 are:

𝜇𝑛 =

∑𝑛
𝑖=1𝑤𝑛,𝑖𝑥𝑖∑𝑛
𝑖=1𝑤𝑛,𝑖

, 𝜐𝑛 =

∑𝑛
𝑖=1𝑤𝑛,𝑖𝑦𝑖∑𝑛
𝑖=1𝑤𝑛,𝑖

(1)

where the weights sum as

𝑊𝑛 =

𝑛∑︁

𝑖=1

𝑤𝑛,𝑖 . (2)

To keep

𝑊𝑛𝜇𝑛 −𝑤𝑛,𝑛𝑥𝑛 = (𝑊𝑛 −𝑤𝑛,𝑛)𝜇𝑛−1, (3)

𝑊𝑛𝜐𝑛 −𝑤𝑛,𝑛𝑦𝑛 = (𝑊𝑛 −𝑤𝑛,𝑛)𝜐𝑛−1 (4)

we have the following constraint between𝑊𝑛 and𝑊𝑛−1:

𝑤𝑛,𝑗∑𝑛−1
𝑖=1 𝑤𝑛,𝑖

=

𝑤𝑛−1, 𝑗∑𝑛−1
𝑖=1 𝑤𝑛−1,𝑖

, 1 ≤ 𝑗 ≤ 𝑛 − 1. (5)
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Then we can derive from the covariance between x and y

𝐶𝑜𝑣𝑛 (𝑥,𝑦) =𝐸𝑛 ((𝑥 − 𝜇𝑛) (𝑦 − 𝜐𝑛))

=

1

𝑊𝑛

𝑛∑︁

𝑖=1

𝑤𝑛,𝑖 (𝑥𝑖 − 𝜇𝑛) (𝑦𝑖 − 𝜐𝑛)

with 𝑓𝑛 (𝑥,𝑦) = (𝑥 − 𝜇𝑛) (𝑦 − 𝜐𝑛) and Eq. 5 that

𝑊𝑛𝐸𝑛 (𝑓𝑛−1 (𝑥,𝑦)) =

𝑛∑︁

𝑖=1

𝑤𝑛,𝑖 𝑓𝑛−1 (𝑥𝑖 , 𝑦𝑖 ) (6)

= 𝑤𝑛,𝑛 𝑓𝑛−1 (𝑥𝑛, 𝑦𝑛)+(𝑊𝑛 −𝑤𝑛,𝑛)

∑𝑛−1
𝑖=1 𝑤𝑛−1,𝑖 𝑓𝑛−1 (𝑥𝑖 , 𝑦𝑖 )

𝑊𝑛−1
(7)

= 𝑤𝑛,𝑛 𝑓𝑛−1 (𝑥𝑛, 𝑦𝑛)+(𝑊𝑛 −𝑤𝑛,𝑛)𝐸𝑛−1 (𝑓𝑛−1 (𝑥,𝑦)). (8)

With 𝑆𝑛 =𝑊𝑛Cov(𝑥,𝑦) we can have:

𝑆𝑛 =𝑊𝑛𝐸𝑛 ( [𝑥 − 𝜇𝑛] [𝑦 − 𝜐𝑛]) (9)

=𝑊𝑛𝐸𝑛 (( [𝑥 − 𝜇𝑛−1] − [𝜇𝑛 − 𝜇𝑛−1]) ( [𝑦 − 𝜐𝑛−1] − [𝜐𝑛 − 𝜐𝑛−1])) (10)

=𝑊𝑛𝐸𝑛 ( [𝑥 − 𝜇𝑛−1] [𝑦 − 𝜐𝑛−1]) +𝑊𝑛𝐸𝑛 ( [𝜇𝑛 − 𝜇𝑛−1] [𝜐𝑛 − 𝜐𝑛−1])

−𝑊𝑛𝐸𝑛 ( [𝜇𝑛 − 𝜇𝑛−1] [𝑦 − 𝜐𝑛−1]) −𝑊𝑛𝐸𝑛 ( [𝑥 − 𝜇𝑛−1] [𝜐𝑛 − 𝜐𝑛−1]) (11)

where the 3rd and 4th term can be simplified as

𝑊𝑛𝐸𝑛 ( [𝜇𝑛 − 𝜇𝑛−1] [𝑦 − 𝜐𝑛−1]) =𝑊𝑛 [𝜇𝑛 − 𝜇𝑛−1] [𝜐𝑛 − 𝜐𝑛−1] (12)

𝑊𝑛𝐸𝑛 ( [𝑥 − 𝜇𝑛−1] [𝜐𝑛 − 𝜐𝑛−1]) =𝑊𝑛 [𝜇𝑛 − 𝜇𝑛−1] [𝜐𝑛 − 𝜐𝑛−1] . (13)

The first term can be simplified with Eq. 8 as

𝑊𝑛𝐸𝑛 ( [𝑥−𝜇𝑛−1] [𝑦 − 𝜐𝑛−1]) = (14)

=𝑤𝑛,𝑛 [𝑥𝑛 − 𝜇𝑛−1] [𝑦𝑛 − 𝜐𝑛−1] +
𝑊𝑛 −𝑤𝑛,𝑛

𝑊𝑛−1
𝑆𝑛−1 (15)

=

𝑊 2
𝑛

𝑤𝑛,𝑛
[𝜇𝑛 − 𝜇𝑛−1] [𝜐𝑛 − 𝜐𝑛−1] +

𝑊𝑛 −𝑤𝑛,𝑛

𝑊𝑛−1
𝑆𝑛−1 (16)

After summing up the four terms, it leads to

𝑆𝑛 =

𝑊𝑛 −𝑤𝑛,𝑛

𝑊𝑛−1
𝑆𝑛−1 +𝑤𝑛,𝑛 (𝑦𝑛 − 𝜐𝑛) (𝑥𝑛 − 𝜇𝑛−1). (17)

Then, the variable-weight covariance has𝐶𝑜𝑣𝑛 (𝑥,𝑦) = 𝑆𝑛/𝑊𝑛

1.2 Exponential moving covariance

In exponential moving average, we have the general form

𝜇𝑛 = (1 − 𝜂)𝑛𝑥0 +

𝑛∑︁

𝑖=1

(1 − 𝜂)𝑛−𝑖𝜂𝑥𝑖 . (18)

Therefore, we have𝑤𝑛,𝑖 = (1 − 𝜂)𝑛−𝑖𝜂, 1 ≤ 𝑖 ≤ 𝑛,𝑤𝑛,𝑛 = 𝜂 and𝑊𝑛 =𝑊𝑛−1 = 1. Then, we have

𝑆𝑛 =

𝑊𝑛 −𝑤𝑛,𝑛

𝑊𝑛−1
(𝑆𝑛−1 +

𝑊𝑛−1𝑤𝑛,𝑛

𝑊𝑛 −𝑤𝑛,𝑛
(𝑦𝑛 − 𝜐𝑛) (𝑥𝑛 − 𝜇𝑛−1))

=(𝑊𝑛 −𝑤𝑛,𝑛) (𝑆𝑛−1 +𝑤𝑛,𝑛 (𝑦𝑛 − 𝜐𝑛−1) (𝑥𝑛 − 𝜇𝑛−1)). (19)
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Since we have

𝐶𝑜𝑣𝑛 (𝑥,𝑦) =
𝑆𝑛

𝑊𝑛
= 𝑆𝑛, (20)

the final simplified exponential moving covariance is

𝐶𝑜𝑣𝑛 (𝑥,𝑦) = (1 − 𝜂)𝐶𝑜𝑣𝑛−1 (𝑥,𝑦) + 𝜂 (1 − 𝜂) (𝑥𝑛 − 𝜇𝑛−1) (𝑦𝑛 − 𝜐𝑛−1) . (21)

When 𝑛 = 0, we have 𝐶𝑜𝑣𝑛 (𝑥,𝑦) = 0.

1.3 EWMA covariance estimator

Note that Eq. 15 leads to the EWMA covariance estimator as

C̃ov𝑛 (𝑥,𝑦) = (1 − 𝜂)C̃ov𝑛−1 (𝑥,𝑦) + 𝜂 (𝑥𝑛 − 𝜇𝑛−1) (𝑦𝑛 − 𝜐𝑛−1) (22)

where the prediction is done with

C̃ov𝑛 (𝑥,𝑦) ≈𝑊𝑛𝐸𝑛 ( [𝑥 − 𝜇𝑛−1] [𝑦 − 𝜐𝑛−1]) (23)

while ignoring the contribution of all other three terms in Eq. 11. The formula we derived Eq.21 is

exactly

Cov𝑛 (𝑥,𝑦) =𝑊𝑛𝐸𝑛 ( [𝑥 − 𝜇𝑛] [𝑦 − 𝜐𝑛]) (24)

2 COVARIANCE OF TWO BATCH MEANS

Let 𝑛 pair of random variables 𝑋𝑖 ,𝑌𝑗 sampled from two different distribution correlated only when

𝑖 = 𝑗 . And 𝑋 =
1
𝑛

∑
𝑋𝑖 , and 𝑌 =

1
𝑛

∑
𝑌𝑗 . Then:

Cov(𝑋,𝑌 ) = Cov(
1

𝑛

∑︁
𝑋𝑖 ,

1

𝑛

∑︁
𝑌𝑗 ) (25)

=

1

𝑛2

∑︁

𝑖

∑︁

𝑗

Cov(𝑋𝑖 , 𝑌𝑗 ) (26)

Since 𝑋𝑖 ,𝑌𝑗 are correlated only when 𝑖 = 𝑗 ,

Cov(𝑋,𝑌 ) =
1

𝑛 ❈2
· ❆𝑛Cov(𝑋,𝑌 ) (27)

3 CV COEFFICIENT AND RESIDUAL FUNCTION SELECTION

In this section we provide an example of how we arrived at the CV coefficient the updating function,

and the residual function for variance tracking if CV requires Monte Carlo sampling (Note that the

purpose of having a variance estimation is for real-time adaptive sampling. The temporal variance

should have minimal impact on it. Otherwise, the sample count will be greatly increased. Since

it’s real-time rendering, we also cannot afford a lot of textures to store history information to

approximate best coefficient).

3.1 Scenario setup

We have a spatial-temporal variant function to integrate 𝑓 (𝑦, 𝑡) = ℎ(𝑡) · 1/(1 + 𝑦), with the control

variable as 𝑔(𝑦, 𝑡) = ℎ(𝑡) · (1 − 𝑦), D ∈ [0, 1]. Then 𝐺 (𝑡) =
∫
D
𝑔(𝑦, 𝑡)𝑑𝑦 = 0.5 · ℎ(𝑡). For simplicity,

100 frame times are performed and a fixed number of samples 16 spp are used for the correlated

Monte Carlo sampling of 𝑓 and 𝑔 to get the estimation 𝑓 (𝑡) and 𝑔(𝑡). The sample count is fixed to

help understand how our method helps to mitigate temporal variance. We have the following 5

configurations for the residual and CV coefficient estimation.
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(1) 𝑅𝑒𝑠𝑡,𝑓 . No CV is applied. The CV coefficient is 0. Therefore 𝑅𝑒𝑠𝑡,𝑓 = 𝑓 (𝑡). This configuration

demonstrates the impact of temporal variance.

(2) 𝑅𝑒𝑠𝑡,𝑆𝐹 . We estimate the CV with single frame covariance between 𝑓 and 𝑔. Then it is used

as the CV coefficient 𝛼𝑡−1,𝑆𝐹 for the next frame to calculate the residual as Res(t) = 𝑓 (𝑡)-

𝛼𝑡−1,𝑆𝐹 · 𝑔(𝑡).

(3) 𝑅𝑒𝑠𝑡,𝑆𝐹+𝐸𝑀𝐴. After estimating 𝛼𝑡−1,𝑆𝐹 , exponential moving average is used to get a better

estimation of the coefficient over time. Then 𝛼𝑡−1,𝑆𝐹+𝐸𝑀𝐴 are used to estimate the residual.

(4) 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 . The covariance matrix ΣΣΣ𝑡 between 𝑓 (𝑡) and 𝑔(𝑡) is updated with EMCM over

time with a weighting factor 𝜂𝑐𝑜𝑣 = 0.05. Then the CV coefficient is 𝛼𝑡−1,𝐸𝑀𝐶𝑀 based on ΣΣΣ𝑡−1.

(5) 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 . The CV coefficient is the same as 𝛼𝑡−1,𝐸𝑀𝐶𝑀 . However, the residual is calculated

as 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 = 𝑓 (𝑡) − 𝛼𝑡−1,𝐸𝑀𝐶𝑀𝐺 (𝑡). The reason we use𝐺 (𝑡) instead of 𝑔(𝑦) is that CV are

used to deal with temporal variance, but should not affect the variance estimation of spatial

variance for adaptive sampling (please see the result section for a better understanding).

With this configuration, we monitor the exponential moving variance on the residual with

𝜂𝑟𝑒𝑠 = 0.2. In the meanwhile, we also have the ground truth configuration 𝑅𝑒𝑠𝐺𝑇 , which is to apply

the optimal CV coefficient. The coefficient is estimated beforehand with large sample counts as

ground truth.

We use two temporal function, 𝑓1 (𝑦, 𝑡) with ℎ1 (𝑡) = 1 and 𝑓2 (𝑦, 𝑡) with ℎ2 (𝑡) = 1 + 3 ∗ 𝑠𝑖𝑛( 𝑡
10
) to

simulate both static and dynamic scenarios.

𝑅𝑒𝑠𝑡,𝑓 𝑅𝑒𝑠𝑡,𝑆𝐹 𝑅𝑒𝑠𝑡,𝑆𝐹+𝐸𝑀𝐴 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 𝑅𝑒𝑠𝐺𝑇

Static (ℎ = ℎ1) 0.0325 0.0160 0.0058 0.0070 0.0324 0.0055

Dynamic (ℎ = ℎ2) 0.5585 0.3797 0.3742 0.1295 0.0732 0.1243

Table 1. The ReMSE of five configurations and the groud truth 𝑅𝑒𝑠𝐺𝑇 . 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 is the best choice based on

our selection criteria: 1) Similar ReMSE to 𝑅𝑒𝑠𝑡,𝑓 in static scene, 2)mitigating temporal variance in dynamic

scene, yet the ReMSE is no less than the static scene counterpart of 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 or 𝑅𝑒𝑠𝑡,𝑓 .

3.2 Result

Static scenarios. Fig. 1a shows the spatial function of 𝑓 and 𝑔 when h = ℎ1. Fig. 1b shows the cor-

responding MC sampling result at each frame time. Fig. 1d shows the estimated optimal coefficient

for different configurations. The optimal coefficient based on a MC sampling of 100k samples has

𝛼∗ ≈ 0.477. Fig. 1e shows the corresponding residual after applying CV. Fig. 1f shows the root

exponential mean square error (ReMSE), which is applying a root operation on the exponential

moving variance. Although it is straight forward that CV can reduce the variance estimation,

however, please note that the reason we apply CV is to remove temporal dimension variance, it

should not affect the spatial variance estimation, otherwise, we could underestimate the number

of samples in static scenes. Since our application is in sample domain instead of shading domain,

by utilizing a good configuration like 𝑅𝑒𝑠𝑡,𝑆𝐹+𝐸𝑀𝐴 or 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 will lead to under-sampling in the

shading domain as the constant term 𝛼 · 𝐺 (𝑡) is not added in shading domain. Because of this,

𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 is the best choice as it has almost the same ReMSE as 𝑅𝑒𝑠𝑡,𝑓 , which is not applying CV.

Table 1 shows the average ReMSE of frame from 25 to 100 (to not count cold start).

Dynamic scenarios. With ℎ = ℎ2, the problem is different as temporal variance is introduced. Fig.

1c shows the corresponding MC sampling result at each frame time. We want to minimize the

temporal variance. The CV coefficient should be derived from the covariance matrix of temporal

domain 𝑡 instead of spatial domain 𝑦 as Cov(𝑓2 (𝑡), 𝑔2 (𝑡)). With 1024 samples per frame, we estimate
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Fig. 1. The CV coefficient and variance under different configuration with 16 samples per frame time.

the optimal CV coefficient 𝛼∗ ≈ 1.388. Fig. 1g shows the run-time estimation of the coefficient.

Fig. 1h shows the residual of all configurations. Fig.1i shows the ReMSE. Here we could observe

that the spatial coefficient 𝛼𝑡−1,𝑆𝐹 and 𝛼𝑡−1,𝑆𝐹+𝐸𝑀𝐴 can reduce the variance but not the temporal

variance. With 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 and 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 , most of the temporal variance has been removed. Table

1 shows the mean ReMSE. It seems both are viable for our adaptive sampling purpose. However,

𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 causes under sampling during static scene. Therefore, the configuration that is suitable

for our use is 𝑅𝑒𝑠𝑡,𝐸𝑀𝐶𝑀 .

In a summary, the CV coefficient is updated with the EMCM. In side the residual function, 𝐺 (𝑡)

instead of 𝑔(𝑦) is selected to allow CV deal with temporal variance, but do not affect the estimation

of spatial variance for adaptive sampling.

4 THEORETICAL FOUNDATION

In this section, we provide the theoretical foundation for:

(1) why the control variates updating function works based on EMCM.
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(2) the relationship among CV coefficient, the expectation and variance of CV residual under

different lighting condition.

(3) time-variant CV coefficient with in-frame constant control variable.

4.1 Updating function

Generally, if we have three random variables 𝑇 , 𝐹 and 𝐺 , where 𝐸 (𝑇𝐺) is a known constant, then

the unbiased Monte Carlo estimator for 𝑇𝐹 ,

⟨𝑇𝐹 ⟩ = 𝛼𝐸 (𝑇𝐺) + ⟨𝑇𝐹 − 𝛼 ·𝑇𝐺⟩, (28)

have has the minimal variance based on the control variates concept where the optimal control

variates coefficient is

𝛼∗
=

Cov(𝑇𝐹,𝑇𝐺)

Var (𝑇𝐺)
, (29)

which can also be derived with the partial derivates of Var (⟨𝑇𝐹 ⟩) according to 𝛼 as

𝑉 [⟨𝑇𝐹 ⟩∗] = Var (⟨𝑇𝐹 ⟩) + 𝛼2 · Var (⟨𝑇𝐺⟩) − 2𝛼Cov(𝑇𝐹,𝑇𝐺) (30)

In subsurface scattering,𝑇 is the temporal intensity changing term.𝑇𝐹 is the joint random variable

of temporal intensity and the subsurface scattering function, while𝑇𝐺 the one of temporal intensity

change and the pre-integration irradiance function. Please note that 𝑇 might not be independent

from 𝐹 and𝐺 , and the point of interest is per pixel. Namely,𝑇 , 𝐹 , and𝐺 are functions on pixel level.

In the adaptive sampling framework, they are scalar.

4.1.1 Time-invariant Scenario. In time-invariant scenario, lighting intensity is temporally stable

(𝐸 (𝑇 ) is constant and Var (𝑇 ) = 0). Therefore, Eq. 29 is simplified to

𝛼∗
𝑠 =

Cov(𝐹,𝐺)

Var (𝐺)
, (31)

which indicates we can use any method to use temporal samples to improve the estimate of CV

coefficient. Note that Eq. 31 and Eq. 29 is only truewhen E(TG) can be derived analytically. Otherwise,

the formulation is more complex [Rousselle et al. 2016]. As illustrated in our experimental example

shown in Fig. 1d, applying EMCM to estimate CV coefficient (𝛼𝑡−1,𝐸𝑀𝐶𝑀 ) is equivalent to applying

EMA on single frame estimation (𝛼𝑡−1,𝑆𝐹+𝐸𝑀𝐴). They all try to converge to 𝛼∗ ≈ 0.477.

4.1.2 Time-variant Scenario. However, when the lighting is not temporally stable, the optimal

stable CV coefficient by Eq. 31 does not hold as a valid alternative as 𝛼∗. We have to fall back to

the original Eq. 29 instead. The temporal information in 𝑇 has to be used for a good estimation.

This is why 𝛼𝑡−1,𝑆𝐹+𝐸𝑀𝐴 fails the purpose. What it does is to estimate the in-frame CV coefficient

𝛼∗
𝑠 . Because inside each frame, the time-invariant property holds. It only uses temporal history to

improve the 𝛼∗
𝑠 estimation instead of considering the temporal random variable 𝑇 , the temporal

unstable intensity. Due to the time-variant feature of𝑇 , we are unable to know the future of 𝐸 (𝑇𝐺)

in real-time rendering beforehand. However EMCM provides the capability to focus most recent

changes to estimate temporal unstable CV coefficient, leading to a different coefficient. For example,

the one as shown in Fig. 1g (𝛼∗ ≈ 1.388), where
∫
D

1
1+𝑦

− 𝛼∗ (1 − 𝑦)𝑑𝑦 = −8.53 × 10−4, and the

variance remains resistant to temporal change (Fig. 1i).

4.2 CV Coefficient, Mean and Variance of CV Residual

To provide a better understanding of the effect of an additional temporal term onCV (the relationship

among 𝛼∗, the variance and mean of CV residual), we provide an analysis of a general case in

real-time rendering where𝑇 is independent from 𝐹 and𝐺 . This assumption is universal in real-time
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rendering where nearly all types of lights have an intensity term and there is one major light

changing intensity in subsurface scattering range. As long as it is still subsurface scattering, the

intensity change will not cause the change of the subsurface scattering and the pre-integrated

irradiance function when the history is properly projected.

Generally in statistics, if we have three random variables 𝑇 , 𝐹 , 𝐺 and a constant parameter 𝛼 ,

where 𝑇 is independent from both 𝐹 and𝐺 . We then have the variance function for the residual as

Var (𝑇𝐹 − 𝛼𝑇𝐺) = Var (𝑇 (𝐹 − 𝛼𝐺)) (32)

= 𝐸 (𝑇 )2Var (𝐹 − 𝛼𝐺) + Var (𝑇 )Var (𝐹 − 𝛼𝐺) + Var (𝑇 )𝐸2 (𝐹 − 𝛼𝐺) (33)

4.2.1 Stable lighting. During stable lighting (𝐸 (𝑇 )2 ≫ Var (𝑇 )), the intensity 𝐸 (𝑇 ) becomes con-

stant and the variance term zero. Then Eq. 33 simplifies to

Var𝐸 (𝑇 )2≫Var (𝑇 ) (𝑇𝐹 − 𝛼𝑇𝐺) = 𝐸 (𝑇 )2Var (𝐹 − 𝛼𝐺) (34)

where the only variance contribution is Var (𝐹 − 𝛼𝐺). Note that the time-invariant part of CV

residual, 𝐸 (𝐹 − 𝛼𝐺), is masked by Var (𝑇 ) = 0. Therefore normally, CV coefficient does not care the

expectation of the residual 𝐸 (𝐹 − 𝛼𝐺). It can be any value. The CV coefficient is just to reduce the

variance part Var (𝐹 − 𝛼𝐺) of the residual.

4.2.2 Dynamic lighting. With 𝑇 being time-variant. Var (𝑇 ) and 𝐸 (𝑇 )2 can be both non-zero and

uncontrollable by our algorithm. The only controllable terms in our algorithm are the expectation

and variance of the redisual term, Var (𝐹 −𝛼𝐺) and 𝐸 (𝐹 −𝛼𝐺). Moreover, the variance term Var (𝑇 )

could be arbitrarily large in game like a continuous gunshots, lightning, and rhythmic lighting in

nightclub (Var (𝑇 ) ≫ 𝐸 (𝑇 )2), then

𝑉Var (𝑇 )≫𝐸 (𝑇 )2 (𝑇𝐹 − 𝛼𝑇𝐺) = Var (𝑇 ) (Var (𝐹 − 𝛼𝐺) + 𝐸 (𝐹 − 𝛼𝐺)2) (35)

= Var (𝑇 )𝐸 ((𝐹 − 𝛼𝐺)2) (36)

Since Eq. 30 derived the optimal CV coefficient solution to minimize the total variance analytically,

an alternative representattion based on Eq. 36 is

𝛼∗
= argmin

𝛼
𝐸 ((𝐹 − 𝛼𝐺)2), (37)

where Var (𝑇 ) is removed as it does not affect the optimization. This formulation is least square

estimation. When 𝛼 = 𝛼∗, we have 𝐸 ((𝐹 − 𝛼𝐺)2) minimized.

4.3 In-frame constant control variable

We try to resolve the temporal stability issue in real-time adaptive sampling. Therefore being

real-time is important. We cannot afford samples to sample both 𝑇𝐹 and 𝑇𝐺 random variables

if they all need to access memory, especially if the memory access pattern is incoherent. Monte

Carlo sampling makes it worse. Because of this, 𝑇𝐺 is accessed as cheap as possible without Monte

Carlo sampling, we use the analytic solution (e.g.,𝐺 (𝑡) = 0.5 ·ℎ(𝑡)). Namely, we have the following

assumption :

𝑇𝐺 = 𝐸 (𝐺)𝑇 and Var (𝐺) = 0. (38)

4.3.1 Stable lighting. With the given assumption in Eq. 38, the time-invariant CV coefficient

updating formula (Eq. 31) does not hold anymore and the estimator is

⟨𝑇𝐹 ⟩ = 𝑇𝐹 − 𝛼 · (
❤❤❤❤❤❤𝑇𝐺 − 𝐸 (𝑇𝐺)), (39)

where 𝛼 is not meaningful and can be any number. If 𝑇 is still independent, the residual variance is

Var (𝑇𝐹 − 𝛼𝑇𝐺) =Var (⟨𝑇𝐹 ⟩) = 𝐸 (𝑇 )2Var (𝐹 ). (40)
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4.3.2 Dynamic lighting. During dynamic lighting, the optimal CV coefficient Eq. 29 simplifies to

𝛼∗
=

Cov(𝑇𝐹,𝑇 )

𝐸 (𝐺)Var (𝑇 )
, (41)

which means, even with a constant in-frame control variable, CV is still valid and working in

temporal domain. This is key to resolve the temporal stability issue in real-time adaptive sampling.

T is independent. If we can further assume that 𝐹 and 𝑇 are independent, Eq. 41 can be as simple

as

𝛼∗
=

𝐸 (𝐹 )

𝐸 (𝐺)
. (42)

With the optimal CV coefficient, the time-invariant part of the residual becomes zero as

𝐸 (𝐹 − 𝛼∗𝐺) = 0. (43)

More specifically,
∫
𝑓 (𝑦) − 𝛼∗𝑔(𝑦)𝑑𝑦 = 0, and the variance Eq. 33 is simplified to

Var (𝑇𝐹 − 𝛼𝑇𝐺) = (Var (𝑇 ) + 𝐸 (𝑇 )2)Var (𝐹 ) . (44)

To help the understanding of this concept, we repeated the same experiment shown in Section

3.1. In this example the 𝐹 random variable 𝑓 (𝑦) = 1
1+𝑦

and the 𝐺 random varriable 𝑔(𝑦) = 1 − 𝑦 is

independent from the time-variant variable 𝑇 , ℎ2 (𝑡). The in-frame constant control variate uses

𝑇𝐺 = 𝐸 (𝐺)𝑇 = 0.5 · ℎ2 (𝑡) directly.
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(b) ℎ2 CV coefficient
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Fig. 2. The CV coefficient and variance with time independent in-frame constant control variable.

Fig.2 shows the corresponding effect on temporal variance when in-frame constant control

variable is used. Based on Eq.42, 𝛼∗ ≈ 1.386.

5 ADDITIONAL IMAGES

Fig. 3 shows a qualitative comparison between with no subsurface scattering, Separable [Jimenez

et al. 2015] and ours.
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(a) Without subsurface scattering

(b) Separable

(c) Ours

Fig. 3. Additional qualitative comparison between without subsurface scattering, Separable and Ours.
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