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Figure 1: Subsurface rendering comparison from close to far at 1920x1080 on NVIDIA Quadro P4000 (implemented in UE4).

(a) our adaptive sampling algorithm (σ 2
0
= 0.001, κ = 0.2, bmin = 8 spp, bmax = 64 spp), (b) Golubev [2018]’s sampling model

in our framework with 64spp, (c) a Baseline fixed 64-sample implementation without our proposed acceleration techniques,

(d) Separable screen-space diffusion. (e) Visualization of our adaptive sample count for each view. Our quality is higher than

Baseline in all three scenarios (close skin patch, ear, and front). Moreover, our algorithm runs faster on the close skin patch

with an acceleration of up to 91.07× (2.78 ms vs 253.18 ms). In addition, our algorithm enables better quality with run time

comparable or even better than Separable. Errormeasurements are PSNR for the subsurface, as compared to a reference image

at 2k samples per pixel. Digital Mike ©Epic Games, Inc.

ABSTRACT

In real-time applications, it is difficult to simulate realistic subsur-

face scattering with differing degrees translucency. Burley’s re-

flectance approximation by empirically fitting the diffusion profile
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as a whole makes it possible to achieve realistic looking subsurface

scattering for different translucent materials in screen space. How-

ever, achieving a physically correct result requires real-time Monte

Carlo sampling of the analytic importance function per pixel per

frame, which seems prohibitive to achieve. In this paper, we propose

an approximation of the importance function that can be evaluated

in real-time. Since subsurface scattering is more pronounced in

certain regions (e.g., with light gradient change), we propose an

adaptive sampling method based on temporal variance to lower

the required number of samples. We propose a one phase adaptive

sampling pass that is unbiased, and able to adapt to scene changes

due to motion and lighting. To further improve the quality, we ex-

plore temporal reuse with a guiding pass prior to the final temporal
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anti-aliasing (TAA) phase that further improves the quality. Our

local guiding pass does not constrain the TAA implementation, and

only requires one additional texture to be passed between frames.

Our proposed variance-guided algorithm has the potential to make

stochastic sampling algorithm effective for real-time rendering.

CCS CONCEPTS

•Theory of computation→ Stochastic approximation; •Com-

puting methodologies → Reflectance modeling; Image pro-

cessing; • Computer systems organization→ Real-time systems.
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1 INTRODUCTION

Subsurface scattering is a demanding feature in real-time appli-

cations. Especially in games, it is used to create the appearance

of translucent materials (e.g., skin, jade, wax, fruit, and marble)

to either mimic real-world materials or create imaginary ones. A

full evaluation of subsurface scattering relies on expensive Monte-

Carlo (MC) simulation of subsurface scattering events [Pharr and

Hanrahan 2000]. The dipole diffusion approximation [Jensen et al.

2001] was the major enabler to make efficient subsurface render-

ing possible. Methods like texture space [d’Eon and Luebke 2007],

pre-integration [Penner and Borshukov 2011] and screenspace sub-

surface scattering [Jimenez et al. 2009, 2015] attempt to provide

faster approximations to the dipole model for real-time applications.

More recently, Burley fit a sum of two simple analytic equations

directly to Monte-Carlo data [Burley 2015; Christensen and Burley

2015]. His formulation provides a simple importance sampling func-

tion, but as a density function, goes to infinity near zero scattering

radius, so is problematic for the direct convolution used by other

real-time models. A recent excellent work [Golubev 2018] brought

the method in screen space with a compromise of pre-calculated

sampling and pattern rotation.

In this work, we introduce a real-time stochastic MC sampling

per pixel per frame in screen space using Burley’s approximation,

without pre-calculated sampling. The major enabler is our proposed

approximated importance function and a novel single pass variance-

guided adaptive sampling algorithm (SPVG) which is capable of

distributing samples to each frame, with just one temporal reuse

texture maintained between frames. The major reason that adaptive

sampling is helpful in subsurface scattering is that there is sparsity

in the sample count requirement, which has already led to the great

pre-integration subsurface scattering method. Nevertheless, there

are three challenging problems to resolve in this paper:

1) Generate samples online efficiently. The cumulative density

function for sampling with Burley’s approximation requires either

an iterative solver (e.g., Newtons or Haley’s method), a multiple

importance sampling of two importance functions, a LUT for each

subsurface profile, or an analytic inverse that is more expensive than

we desire for real-time rendering. We present an approximation to

the inverse function that is simple to evaluate online.

2) Design a one pass adaptive sampling algorithm. A classic adap-

tive sampling algorithm consists of two phases, which is inefficient

for real-time application due to sample disposal and might lead to

bias due to low sample counts in the first phase. Usually, in the first

phase, samples are gathered to determine the variance and then

discarded to avoid bias. In the second phase, an adaptive number of

samples is used to reduce the variance. Recent research tries to use

all samples by posing the two sample sets as a multiple importance

sampling problem [Grittmann et al. 2019]. In this paper, we make

it a one adaptive sampling guiding pass for subsurface scattering

that makes use of each individual sample. Specifically, sample vari-

ances at each frame are continuously updated into a temporal buffer

based on exponential moving variance. With temporal reuse, this

variance at each frame reflects the pixel condition in the previous

adjacent frames and is capable to control the sample counts for the

next frame without visible bias for stochastic sampling.

3) Make the algorithm generic. Since we cannot afford too many

samples per frame in real-time rendering, we make use of temporal

reuse, which has recently been explored for improving the quality

of 1 sample per pixel path tracing [Schied et al. 2017]. However,

this work makes changes to the existing temporal reuse algorithm,

which does not fit well into existing rendering engines. We explore

in a different way by adding a pass for guiding the subsurface

scattering that assumes there is an existing temporal reuse pass

like Temporal Anti-aliasing (TAA), but without assumptions about

the implementation of that temporal reuse pass, as long as it tries

to make use of temporal information and to resolve artifacts like

ghosting, blurring, lag and flickering.

Our contributions include:

• We approximate the Burley importance function to sample sub-

surface scattering in real-time.

• We present a one pass adaptive sampling method, which is shown

to be suitable for accelerating subsurface scattering in real-time.

This method adaptively concentrates samples on demanding

regions and reduces samples where not required. It also leverages

the existing TAA process to improve the quality, yet without

constraint on the implementation of that TAA. We get a total

acceleration up to 91.07×. For all test scenes, adaptive sampling

provides 2× to 6× acceleration when compared to fixed sampling.

• Our variance-guiding pass for a stochastic sampling process (sub-

surface scattering) only needs one additional texture to enable

per-pixel per-frame quality control. Our algorithm is general and

can be easily implemented for other algorithms. We believe it is

may also have potential for offline adaptive importance sampling.

2 RELATED WORK

Our work focuses on real-time subsurface scattering, adaptive ren-

dering, and temporal reuse. Subsurface scattering for offline ren-

dering is outside the scope of this paper.

Real-time subsurface scattering. Early rendering algorithms for

subsurface scattering used Monte Carlo path tracing to solve the

radiative transfer equation. Even with the introduction of Bidirec-

tional scattering-surface reflection distribution function (BSSRDF)

[Nicodemus et al. 1977] to simplify subsurface integration onto

https://doi.org/10.1145/3384536
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surface domain, these algorithms took hours to generate an image

on hardware of the day. Jensen introduced a BSSRDF light diffusion

model with the dipole [Jensen et al. 2001] and multi-dipole [Don-

ner and Jensen 2005] approximations. The simpler dipole method

only considers isotropic subsurface scattering in highly scattering

media, but introduced the diffuse reflectance profile, which allowed

compact representation and efficient evaluation.

Two different directions that reduce the complexity for real-time

rendering when using diffuse profiles are online sampling and pre-

integration. Online sampling is designed with an assumption that

subsurface scattering can be approximated by a weighted sum of

artist-friendly kernels [Borshukov and Lewis 2005] or dipole based

Gaussian kernels [d’Eon et al. 2007]. The sample count is further

reduced by shifting from texture space [d’Eon and Luebke 2007] per

subsurface object to screen space [Jimenez et al. 2009, 2015] after

deferred rendering. In contrast, pre-integration methods offload

online sampling based on the dipole approximation into texture

look-ups based on the assumptions that subsurface scattering is

visible when there is light gradient change [Penner and Borshukov

2011] and the distance to shadow can be correctly reconstructed.

Recent advances in physically-correct subsurface rendering fit an

approximation to Monte-Carlo results instead of fitting the dipole

model, which is already an approximation [Christensen and Burley

2015]. This technique has been recently incorporated into the Unity

game engine with pre-calculated sampling [Golubev 2018]. In this

work, we propose an approximation of the importance sampling

function that can be used for real-time subsurface scattering.

Adaptive rendering. Adaptive rendering adjusts sampling density

and filtering to improve efficiency. Sparse linear models and opti-

mal sampling windows are recursively updated to best reconstruct

neighboring pixels [Moon et al. 2015]. An error estimator guides

sampling to high variance regions. Adaptive sampling algorithms

often require significant memory and computing power to solve an

optimization function, e.g., in gradient domain [Manzi et al. 2016]

for path tracing. Typically, two passes are required [Moon et al.

2014]. In the first phase, a small number of uniform samples are

allocated to gather the error. In the second pass, additional samples

are allocated based on error metrics in the first pass. We propose a

single pass adaptive sampling model that only needs to store one

additional texture across frames and with little calculation over-

head. The proposed one pass model is able to pick up dynamic light

and motion changes and adjust samples effectively.

Temporal reuse. Real-time rendering demonstrates high spatio-

temporal coherence [Scherzer et al. 2012]. This coherence has been

used for temporal anti-aliasing [Karis 2014](TAA) and accumula-

tion with shading or geometry information to amortize cost and

improve the rendering quality. The major problems dealt with in the

literature are blurring, ghosting, lag and flickering [Iglesias-Guitian

et al. 2016; Patney et al. 2016; Xiao et al. 2018] due to the use of

exponential moving average that blends history with the current

frame, and heuristics to tell if they are from the same object.

Temporal information has also been integrated with other sys-

tems to amortize sample costs. Recent work replaces the TAA result

with ray tracing when ghosting and blurring are detected based on

variance and depth [Marrs et al. 2018]. The spatio-temporal variance

guided filter (SVGF) method includes geometry information and

an image-space wavelet filter to achieve one sample per pixel real-

time path tracing[Schied et al. 2017]. Schied et al. [2018] adaptively

change the exponential weights based on temporal gradients to im-

prove the scene temporal stability (reducing temporal overblurring)

caused by fast light changes when using SVGF.

In this work, we guide the stochastic sampling process through

temporally-accumulated variance and effective sample count. This

allows us to amortize the sample count to meet quality require-

ments and time budget per pixel. We do this without modifying the

existing TAA process or constraining its implementation, providing

more stable and lower variance input to the TAA process, while

still relying on that TAA to combine samples across frames. Unlike

existing work [Iglesias-Guitian et al. 2016] where linear models and

inverse covariance matrix are fit through recursive least squares to

provide variance information, we use a light-weight algorithm that

needs only one additional texture to be passed between frames.

3 BACKGROUND

We briefly review subsurface scattering and temporal anti-aliasing

as used in real-time rendering.

3.1 Subsurface scattering

At a surface point p, the outgoing illuminance for direction ωo is

Lo (p,ωo ) =

∫

∂Ω

∫

S2
Li (q,ωi )S(q,wi ,p,wo )dωidq, (q ∈ ∂Ω), (1)

where S is the bidirectional scattering-surface reflectance distribution

function (BSSRDF). Eq. 1 is often simplified by assuming a radially

symmetric S in a homogeneous semi-infinite planar medium as

S(q,wi ,p,wo ) = CFt (q,ωi )R(rq )Ft (p,ωo ), (2)

where rq = | |p − q | |, Ft (·) is the directional fresnel transmission

term and C is a constant term. Then, for a given flux reflection

direction ω at p, the simplified subsurface scattering function with

symmetric diffusing profile at the surface point p becomes

Lo (p,ω) =

∫

∂Ω

2πrqR(rq )·

∫

S2
CFt (p,ω)Ft (q,ωi )Li (q,ωi )⟨ωi ,nq⟩dωidrq . (3)

To use this formula, e.g., in deferred rendering, the internal

integration can be pre-calculated into irradiance textures for all

lights. The outer one can be implemented as a post-processing

pass. In this paper, we focus on the efficient sampling of the outer

integration.

Burley’s profile approximation. In the literature, most work de-

composes S into single scattering, multi-scattering, and/or radiance

reduction terms as S = S(0) + S(1) + Sd [Habel et al. 2013] and

handles them separately.

Instead, Christensen and Burley [2015] directly approximate the

diffuse reflectance profile R(·) based on empirical MC simulation

data including all scattering terms. R(·) can be well approximated

by a sum of two exponential functions in terms of distance r as

R(r ) = A
e−r/d + e−r/(3d )

8πdr
, (4)

where A is the surface albedo with A =
∫ ∞

0
R(r )2πrdr [Jensen and

Buhler 2005]. The d term is fit to a free path length parameter ℓ
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based on the configuration Θ,

d =




ℓ
/ (
1.85 −A + 7|A − 0.8|3

)
Θ = Θ1

ℓ
/ (
1.9 −A + 3.5(A − 0.8)2

)
Θ = Θ2

ℓ
/ (
3.5 + 100(A − 0.33)4

)
Θ = Θ3

(5)

where we have:

(1) Search light configuration (Θ = Θ1). Light enters the volume

perpendicular to the surface. ℓ is the volume mean free path.

(2) Diffuse surface transmission (Θ = Θ2). ℓ is the volume mean

free path for a rough material after ideal diffuse transmission.

(3) Diffuse mean free path as parameter (Θ = Θ3). ℓ is the diffuse

mean free path on the surface.

We choose Θ3 as being more artist friendly for typical game uses.

3.2 Temporal Anti-aliasing

Temporal anti-aliasing (TAA) [Karis 2014] is the de facto standard

for anti-aliasing in real-time rendering engines. It amortizes sam-

pling over time with an exponential moving average to accumulate

consecutive frames in color space per jittered pixel. When an ob-

ject moves, TAA reprojects samples from the accumulated history

buffer along a per-pixel velocity vector. We summarize it as

µi = (1−α)C(xi ,Λ)+αS(pi ); α =M(α0,Λ);pi = N(xi , f (i)), (6)

where µi is the estimated value at pixel xi ∈ R
2 in frame i . α is the

exponential weight between the clamped history context term C

and current-frame shading term S. α is the per-pixel exponential

moving average weight as computed by the weight update func-

tion M based on the user defined max weight α0 and a context

Λ that includes velocity, geometry type (e..g, transparent or not),

neighbors etc. C is an operator to resample and reject the history

projected from xi . Both C and M are designed to minimize arti-

facts (i.e., ghosting, blurring, lag, and flickering) while preserving

anti-aliasing results [Karis 2014; Yang et al. 2009].

S is the shading function atpi , wherepi is a jittered pixel position

computed by the neighbor sampling functionN from pixel position

xi and filter-kernel importance sampling offset f .

When used to accumulate MC results across multiple frames, the

clamping and rejection performed by C andM need to either be

modified to explicitly account for the MC process, or the incoming

variance inSmust be reduced to fit their rejectionmodel. Inmodern

game engines, TAA is used to accumulate samples from many MC

processes, including glossy reflection, ambient occlusion, shadow-

ing, and subsurface scattering. Methods that modify the clamping

and rejection models for one MC method used in isolation are not

effective given the multiple types of accumulation being performed

by TAA. In this paper, we do not modify the existing TAA process.

Instead, we create one local variance-guided phase starting from

Eq. 6 that outputs an adaptive sampling count per pixel per frame.

The sampling result goes to the standard post-process pipeline and

uses the existing TAA to further improve quality.

4 VARIANCE-GUIDED MC SAMPLING

There are two problems to solve to efficiently use MC sampling

in real-time: I) The minimal number of samples to reach a target

quality level, and II) Efficient online sample generation.

4.1 Minimal sample count estimation

To estimate the minimal sample count, we need a metric to adap-

tively increase the number of samples when there is high perceiv-

able noise and decrease fewer samples are sufficient.

4.1.1 Basic Metrics. We estimate the minimal number of samples,

n(i) =max
(
σ 2
M(i−1)

· n(i−1)

/
σ 2
0 , β(i−1)

)
, (7)

where n(i−1) is the minimal sample count estimated in the previ-

ous frame, σ 2
M(i−1)

is the pixel variance of the distribution mean

estimated in the previous frame. The purpose of this formula is to

reduce the variance of the distribution mean to a target level σ 2
0
.

Due to lighting and the chance that we might miss some details if

we have too few samples, we always use at least β(i−1) samples.

We do not know the exact distribution per pixel, due to motion

or lighting conditions, but by the central limit theorem, given a

population of a finite mean and variance, the sampling distribu-

tion of the mean µM becomes a normal distribution of (µ,σ 2/N )

as sample size increases, regardless of the shape of the original

distribution. Therefore, we can estimate the variance in means as

the distribution is sampled repeatedly across frames.

Using this algorithm to determine the minimal number of sample

count in two phases would still be inefficient (i.e., in the first pass,

collect samples to gather the variance, and estimate the sample

count for rendering in the second pass). We adopt the idea of tem-

poral accumulation from TAA to reduce the number of samples per

frame and make it a one pass adaptive sampling technique.

4.1.2 Metrics within Temporal Accumulation. To reduce sample

count in each frame, we perform variance and sample count esti-

mation in a local phase. With Eq. 6, we calculate an exponential

moving average (EMA) over jittered pixel values. When α is small

enough, it will eventually converge to µM = µ, the population mean

[Karis 2014]. Instead of recording all three channels, we record the

moving average of gamma-corrected luminance to consider human

perception. Knowing the sample count n(i) at frame i , we estimate

the mean sample count, n̄(i) as

n̄(i) = (1 − α)n̄(i−1) + αn(i), (8)

and the population variance σ 2 with exponential moving variance

(EMV) [Finch 2009] as

σ 2
i = (1 − α)σ 2

i−1 + α(1 − α)(S(pi ) − C(xi ,Λ))
2. (9)

In this way, we can accumulate sample counts to solve Eq. 7. We

now ignore β(i−1), it can be set after we get n(i). If a consecutive k

frames are accumulated, the equation becomes

i∑

i−k+1

n(j) =
σ 2
M(i−1)

∑i
i−k+1

n(j−1)

σ 2
0

. (10)
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Then the estimated sample count for the current frame is

n̂(i) =

i∑

i−k+1

n(j) −

i∑

i−k+1

n(j−1) + n(i−k ) (11)

≈
(σ 2
M(i−1)

− σ 2
0
)

σ 2
0

· n̄(i−1) · k + n̄(i−1) (12)

=

(σ 2
M(i−1)

− σ 2
0
)

σ 2
0

· n̄(i−1) · (k − 1) + E(n̄(i)). (13)

Since we are using EMA and EMV, we cannot maintain n(i−k), we

approximate it by n̄(i−1). Then, we estimate k as k = 2/α − 1 based

a common conversion between N-day EMA and simple moving

average in analysis of financial data [Bauer and Dahlquist 1998]. Eq.

13 is the expected samplemean, E(n̄(i)) = σ 2
M(i−1)

/σ 2
0
·n̄(i−1) at frame

i derived from Eq. 10, plus a correction term. When |σ 2
M(i−1)

−σ 2
0
| is

large, this correction term will be very large to aggressively reduce

the variance to the target level in a single frame. We add a control

factor κ to limit the per-frame correction. Then the final formula

based on Eq. 13 is

n̂(i) = κ · ∆(i) + E(n̄(i)),κ ∈ [0, 1] (14)

∆(i) =
(σ 2
M(i−1)

− σ 2
0
)

σ 2
0

· n̄(i−1) · (k − 1), (15)

where ∆(i) is the correction term. At κ = 1, this favors faster

convergence at the cost of firing up to the maximum sample budget

per frame, while atκ = 0 it uses time to accumulate enough samples.

Ee = 4/π

r = 0.5

Ee = 04.1.3 Circle scenario. We create a simpli-

fied subsurface scattering scenario to help

understand this estimation. We simplify the

subsurface scattering scenariomodel to sam-

ple uniform irradiance in a circle of radius

0.5 centered at (.5, .5). We sample with a uni-

form 2D random number (ξ1, ξ2) ∈ [0, 1)2

(instead of using Burley’s subsurface scat-

tering model). The accumulated irradiance is 4/π within the circle

and 0 outside. We give the sample budget of bmin = 8 spp and

bmax = 64 spp, use α = 0.2 and a target quality level σ 2
0
= 0.082.

The history tuple Hi = (n̄(i), µi ,σ
2
i ) is initialized to 0. Fig. 2 shows

the sample count, variance and the scattering result over 150 frames

for κ = 0 and κ = 1. After a cold start session, both methods try to

converge to 1 within the given quality level. n̂(i) in Fig. 2a and 2c

shows how κ affects the actual samples used in each frame. The

κ = 1 case has higher sample count peaks, usually lasting for a

single frame, while κ = 0 uses fewer samples, but with sample

count increases smoothed over several frames.

4.1.4 Disocclusion. Fig. 2 shows the sample count per frame for a

cold start, which is rare in typical rendering scenarios. The more

common case for missing history data is disocclusion, when a pre-

viously hidden portion of an object becomes visible. We estimate

the initial history when disocclusion happens.

Denote Cs (·) as a point sampling operator without rejection on

subsurface mask history. Cs (xi ,Λ) = 0 when the subsurface mask
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Figure 2: Sample count estimation. Effect of using different

correction factors (κ = 0 vs κ = 1) in Eq. 14 in Circle Scenario.
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Figure 3: Sample count estimation considering disocclusion

with the same configuration in Fig. 2. We initialize the his-

tory Hi with estimation from the initial sampling to solve

the overestimation due to disocclusion (cold start).

history is not available in the previous frame. Then our newM has

M ′(α0,Λ) =

{
1 Cs (xi ,Λ) = 0

α0 otherwise
. (16)

This operator enables the estimation of the initial sample value as

S(pi ) with an initial sample count of n(i) = max(n̂(i), β(i−1)). We

have no variance history, so estimate the variance as

σ̂ 2
i (α0,Λ) =

{
σ 2
0

Cs (xi ,Λ) = 0

σ 2
i otherwise

. (17)

Fig. 3 shows how the updated weight function M and variance

estimation work under the same configuration as in the Circle

Scenario. The initial high sample counts are eliminated.

4.1.5 Integration with Global TAA. In the previous section, we

estimated the sample counts at each frame with the assumption that
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Figure 4: Per-frame local variance guided Screen-space Subsurface Scattering (SSS) sampling to reach a target final rendering

quality. The image shows a test scene and two representative points, P1 (red) in shadow, and P2 (blue) fully lit. The graphs

show per-frame local (σl ) and global (σд ) pixel standard derivation (SD) when n̄ is estimated based on Eq. 8. Local target quality

level is σ 2
0
= 0.012, with EMAweight αl = 0.2, and control factor κ = 1. The sample budget is [bmin,bmax ] = [8, 64] spp. The mean

of local and global SD is σ̄l = 0.0097 and σ̄д = 0.0029 for P1, σ̄l = 0.0044 and σ̄д = 0.0031 for P2.

local and global TAA use the same configuration (i.e., Cl = Cд,Sl =

Sд,Λl = Λд,Ml =Mд andMl (α0,Λl ) = α0) so that the variance

guided sampling guides the global TAA quality. However, this is

not guaranteed in a real-time rendering engine. The TAA weight

and functions are primarily tuned for artifacts outside of subsurface

scattering. In addition, the same subsurface scattering pixel could

have other contributions like overlaid transparent objects.

To make it a general technique for subsurface scattering without

assumptions on the global TAA, we choose to target a lower bound

on subsurface quality to improve the overall TAA quality. Denote

γ = (C,M,N) as a solution in the space Γ, γ ∈ Γ. The variance for

a given context Λi at frame i of a pixel has σ 2
i ,γ = ς2(γ ,Λi ). We

chose γ = γ0 such that for any given sequence of length Nb :

γ0 = argmax
γ0,γj ,γ0,γj ∈Γ

Nb∑

i=1

1σ 2
i ,γ0

σ 2
i ,γj

(18)

where the indicator function has 1A(B) = 1 if A <= B, otherwise

1A(B) = 0. Eq. 18 selects the solution that consistently produces

lowest variance every frame. To achieve this, we choose C to be

a nearest neighbor sampler without history rejection, M to be a

max operator with M(α0,Λ) = α0 and N as the default sample

position when TAA is used (e.g., positions following a Gaussian

distribution). In practice, it is sufficient to be the lower bound.

To illustrate the effect of this selection, we show a sequence of

per frame local variance and global variance in Fig. 4 at a shadow

pixel and a direct lighting pixel. We fix αl to 0.2 (this is the maximal

weight in UE4 where we implemented our algorithm) and σ 2
0
=

0.012. In this example, the mean global pixel standard derivation

is smaller. Moreover, in high variance pixel P1, the average global

target quality is 11.19 times better than the actual local quality. P2

has lower variance than the target quality, at the minimal allowed

sample count of βi−1 = 8 spp. It results in a variance 2× better.

When the minimal sample count is determined, we need an

efficient sampling method to meet the rendering requirement.

4.2 Efficient sample generation

We simplify Eq. 3 for Monte Carlo sampling at p to

Lo =
1

n

n∑

j=1

2πrqjR(rqj ) · Lqj

pdf qj
. (19)

0 0.5 1 1.5 2

Radius (mm)

-20

-10

0

10

20

P
e

rc
e

n
ta

g
e

 e
rr

o
r 

(%
)

0

0.5

1

c
d

f

c=2.8

c=2.7

c=2.6

c=2.5715

c=2.5

cdf
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Figure 6: Analytic inverse vs. our approximation. Graphs

of the analytic (orange) and approximate (dashed blue) are

shown, along with the percentage error. The image shows

that the errors do not produce significant visual differences

between the analytic and our approximation for the config-

uration c = 2.5715 in Fig. 5 for the CDF, and 2D profile ren-

dered in UE4.

where Lo is the scattering result, rqj and pdf qj are the radius to

center p and PDF of the jth sample. Lqj is the accumulated diffuse

irradiance at qj . To solve this equation, apart from an efficient 2D

sampling sequence (ξ1, ξ2) (which is out of the scope of this paper),

we need to importance sample the density function based on the

CDF for radius sampling:

cdf (r ) = 1 −
1

4
e−r/d −

3

4
e−r/(3d ) (20)
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(a) MIS
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(b) Our approximation
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(d) Eye

Figure 7: Infinite head (©Lee Perry-Smith) rendered with (a)

MIS and (b) our approximation from Eq. 21 in PBRT. RMS

error is 1.87%.We show a close comparison of high scattering

region (c) ear and (d) eye with their pixel differences.

Christensen [2015] suggests to use multiple importance sampling

(MIS) of the two exponents, Newton iterations, or a look up table.

Golubev [2019] derived an analytic inverse solution. Instead, we

propose to use a simpler function д(ξ ) that approximates cdf −1(ξ )

as:

д(ξ ) = d((2 − c)ξ − 2)loд(1 − ξ ); (21)

where c is a parameter to control the damping of the function. We

find that when c = 2.5715, we have the minimal mean squared

error of cdf (д(ξ |c)) vs. ξ as optimized using least squares nonlinear

curve-fitting [Coleman and Li 1996] at the tolerance of 10−6. Fig. 5

shows the CDF function and the approximation error.

Since this is an approximation to the inverse CDF, samples gener-

ated with it are only a (close) approximation to the Burley PDF. To

evaluate its quality, Fig. 6 illustrates how close the analytic inverse

and our approximation are. In the beam light scenario (Fig.6b), the

circle light (10 flux) radius is 1 cm. Zooming into the figure, a tiny

shrink in scattering distance can be observed, but is negligible at

normal viewing distances. Further more, we implemented our ap-

proximation into PBRT [Pharr et al. 2016] and compared it with the

built-in MIS method. Fig. 7 shows the rendering comparison within

PBRT using the head scene. The dmfp parameter is derived from the

skin1 configuration in Jensen et al. [2001]. Our approximation has a

small RMS error of 1.87% compared to multi-importance sampling

for 2k spp.

Setup
Variance guiding phase

Sample 
Estimation Update

SceneColor

SSS MC 
Importance  
Sampling

Sample Count

Diffuse Irradiance

Non-Subsurface

Scattering result Base Color

Combined

Prefiltering

Figure 8: Subsurface pass overview. The variance guiding

phase enables one pass adaptive sampling. In each frame,

this pass 1) estimates the number of samples per pixel per

frame and 2) updates the history Hi .

5 IMPLEMENTATION

We implemented our subsurface scattering as a single screen-space

adaptive sampling post-processing pass in UE4, without modifying

the final TAA pass. Fig. 8 summarizes the subsurface scattering

pass. The scene color is broken into diffuse irradiance and non-

subsurface irradiance. Then we prefilter the diffuse irradiance map

to accelerate cache hits when incoherently sampling the irradiance.

During screen-space subsurface scattering, we use our importance

approximation Eq. 21 to sample in the subsurface plane that is

perpendicular to our view direction. The number of samples is esti-

mated in the variance guiding phase. Since we could have different

adjacent subsurfaces, we cache an 8-bit profile ID texture to resolve

how bleeding color between profiles is mixed. After sampling, the

result is used to update the history texture that stores Hi per pixel

with α0 = 0.2 (the max weight for the non-transparent object in

UE4). Finally, the scattering result is combined with surface albedo

and the non-subsurface part to form the final output. In order to

make it real-time and have a realistic rendering result, two existing

techniques are tailored to our needs.

Pre-filtering. Prefiltering has been successfully used in environ-

mental map importance sampling [Křivánek and Colbert 2008]. We

use it for screen-space scattering irradiance sampling. Specifically,

we generate the mip level with

m =
1

2
·max

(
−loд2

(
a · pdf · n̂(i)

ℓ2max · t

)
, 0

)
(22)

t =
w

D

w · AspectRatio

D
=

(w
D

)2
· AspectRatio (23)

where ℓmax is the max diffuse mean free path of the three-channel

subsurface profile. a is a constant factor to scale the mip level. t is

the texel size in screen space considering world unit scalew , D is

the scene depth at the center sample. We find a = 1
16

gives a good

balance between quality and performance.

Bilateral filtering. We adopt depth-based bilateral filtering [Gol-

ubev 2018] to solve the bleeding problem between distinct scattering

surfaces. We extended Eq. 19 as:

Lo =

∑n(i )

j=1 1s (qj ) · r
′
qjR(r

′
qj )/pdf qj · Lqj

∑n(i )

j=1 1s (qj ) · r
′
qjR(r

′
qj )/pdf qj

(24)

where r ′qj =
√
r2qj + ∆D

2
qj , ∆Dqj is the depth difference between

qj and the center sampling point, and the indicator function 1s (qj )

is 1 if there is subsurface and 0 otherwise at qj .

6 RESULTS

We include comparisons to evaluate the quality and speed of our

adaptive sampling algorithm. For quality, we compare root mean

square error (RMSE) and gray-scale peak signal-to-noise ratio (PSNR).

For real-time performance, we compare speed and quality to Bur-

ley’s method without the adaptive sampling, and to the separable

screen-space method that is the standard implementation in UE4.

We modified it to approximate Burley’s model instead of Dipole.

Please refer to Appendix A.1 for more information about our ap-

proach and validation of this approximation. Unless otherwise spec-

ified, all performance numbers are measured on NVIDIA Quadro

P4000 with a resolution of 1366x1024. We measure time inms for

just the subsurface work.



I3D’2020, May 2020, San Francisco, CA, USA Tiantian Xie*, Marc Olano, Brian Karis, and Krzysztof Narkowicz
(a
)
D
ra
g
o
n

(1) PBRT Ref (I ′r ) (2) Ours (I ′o ) (3) 2· |I ′r − I ′o | (4) Zoom-in (Ref) (5) Zoom-in (Ours) (6) +Trans. (7) Sample Count

(b
)
H
ea
d

(c
)
B
u
d
d
h
a

Figure 9: Subsurface ground truth comparison (without transmission). (a) Stanford Asian Dragon, (b) Infinite-Realities head,

and (c) Stanford Happy Buddha at 1366×1024. In each row, we show (1) PBRT reference, (2) our scattering, and (3) difference

from PBRT. We also zoom into a high difference region for (4) PBRT and (5) ours (6) with transmission. The (7) sample count

from our one pass adaptive sampling (white = 64 spp, black = 0 spp). For our algorithm, κ = 0.2, σ 2
0
= 0.001, [bmin,bmax ] =

[8, 64] spp.

6.1 Quality comparisons

We compare against PBRT ground truth in Fig. 9 for three scenes:

Dragon, Infinite-Realities head, and Happy Buddha. We compare

our screen-space subsurface scattering (with no transmission) to

the PBRT path integrator with Disney material with maxdepth = 1.

To focus on subsurface and minimize the difference caused by differ-

ent light and tone mapping implementations, only point lights are

used, with maximum shadow resolution in the UE4 rendering. Tone

mapping is not applied in either renderer for ground truth com-

parison. The results show that, while some differences are visible,

they remain qualitatively low. We hypothesize the most significant

differences are due to the PBRT renderings including transmission

paths, while diffusion models cannot. UE4 does include a separate

translucent object transmission model. To confirm this as the ma-

jor source of observed errors, we replaced the UE4 transmission

profile with Burley’s model as shown in Fig. 9(6). This produces a

closer (though still not exact) match. We believe a better real-time

transmission model could further reduce the difference.

6.2 Adaptive sampling quality

For real-time timing evaluation, we compare our adaptive algo-

rithm to a fixed sample-count interactive implementation of the

Burleymodel, and the UE4’s separable screen-space diffusionmodel,

tuning each for approximately equal quality as compared to a 2k

sample per pixel ground truth within UE4. Performance for the

sampling models is worst at a close viewing distance since the tex-

ture accesses are least coherent then, with cache misses causing

significant performance degradation. Therefore, we evaluate the

quality and performance of adaptive sampling at both a normal

viewing distance, and at a view close to the surface.

Regular distance. We compare a fixed 2k-sample rendering of

the Buddha model to our adaptive algorithm, with a max sample

count of 64 and varying σ 2
0
and κ. For timing, both the Buddha and

checkerboard base plane use the subsurface material, though the

PSNR is only calculated for the Buddha pixels. Fig. 10 shows the
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Figure 10: Varying PSNR and κ for the Buddha scene with

bmax = 64 spp. Color shows pass time in ms. PSNR numbers

in parentheses are single-frame without TAA. Fixed 64 spp

runs in 4.38ms with final PSNR= 40.51(32.91) dB.

PSNR of the Buddha and the subsurface time. Our algorithm runs

faster (1.97×) with negligible quality difference (40.51-40.2=.31 dB)

when local target quality is σ 2
0
= 0.0001 (PSNR=40.00 dB). Moreover,

our algorithm can make use of TAA to boost the performance with

small quality degradation. For examples, when the local target

quality is σ 2
0
= 0.001 (PSNR = 30.00dB), the final quality reaches

38.36 dB with a speedup by 2.12× in 2.07ms. The last column of Fig.

9(c) shows the sample count of the Buddha in this configuration.

Close distance. We use a forehead skin patch from Digital Mike

model that has high scattering distance in UV space to investigate

this case. Fig. 11 shows the final PSNR and subsurface time. Espe-

cially, when local target quality is σ 2
0
= 0.001 (PSNR = 30 dB), our

algorithm adaptively reduced sample count to bmin = 8 spp for all

κ. We almost achieved equal quality when compared to fixed 64spp

(40.26 dB vs. 40.39 dB) with a speedup of 4.15× (from 7.51 ms to

1.81 ms). We expect better performance for adaptive sampling in

these cases vs. fixed sampling, since adaptive sampling reduces the

number of incoherent non-cached texture accesses.

With the sampling bandwidth bottleneck of close views, the 8-

bit cached profile ID texture is critical for performance. Though

computed each frame, profile ID texture generation is coherent,
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Figure 11: Varying PSNR and κ for the close skin patch with

bmax = 64 spp. Color shows pass time in ms. PSNR numbers

in parentheses are single-frame without TAA. Fixed 64 spp

runs in 7.51 ms with final PSNR= 40.39(36.02) dB.

(a) Separable (b) Ours

Figure 12: Quality comparison of high scatteringmarblema-

terial. Observable vertical banding artifacts in (a) Separable.

and it reduces the incoherent accesses from 16 bytes per sample to

one byte per sample. Without the texture, quality level 0.001 took

4.23ms (6.13×) while fixed 64 spp took 25.94 ms. When compared to

Separable, the rendering time of this case is faster than our model, at

3.06 ms, but the separable approximation shows significant banding

artifacts in close views, resulting in a worse PSNR = 39.95 dB. We

show a better comparison of the artifacts to ours in Fig. 12.

6.3 Equal quality comparison

Fig. 13 compares a single frame Buddha scene quality between our

adaptive sampling algorithm and fixed sampling, given approxi-

mately the same execution time. In the Buddha scene, we fixed

bmin = 8,bmax = 64 with two different σ 2
0
,κ settings that lead to

the best quality (σ 2
0
= 0.001,κ = 0.2, and σ 2

0
= 0.0001,κ = 0.6).

The quality compared to 2k-spp ground-truth is better using our

adaptive sampling algorithm.

Fig. 1(a) and (c)/left compares quality on the Digital Mike model

for equal time comparison between our adaptive sampling algo-

rithm and the fixed sampling algorithm without pre-filtering and

profile caching as a baseline. We also show two other views with

the same settings (middle and right). Fig. 1(d) shows the separable

screen-space filtering algorithm for the same views. Fig. 1(e) visual-

izes the sample counts for our adaptive algorithm in each view. The

result shows that our algorithm targets best quality with a single

setting that runs comparable or even better than Separable.

6.4 Real-time counterpart comparison

We also implemented the state-of-art screenspace subsurface scat-

tering Golubev [2018]’s sampling into our framework as a fixed

64-sample ground truth with the Burley diffuse profile instead of

RMSE: 2.7e−2 RMSE: 1.6e−2 RMSE: 2.5e−2 RMSE: 1.4e−2

RMSE: 2.3e−2 RMSE: 1.2e−2 RMSE: 2.2e−2 RMSE: 0.9e−2

fixed / 2.08ms adap. / 2.08ms fixed / 2.20ms adap. / 2.21ms ground truth

Config: 26 spp σ 2
0
= .001 28 spp σ 2

0
= .0001 2k spp

Image PSNR: 36.61 dB 38.51 dB 37.14 dB 40.39 dB

Figure 13: Equal time comparison: fixed vs. adaptive.

our approximation. The result is shown in Fig. 1(b). Based on the

approximation comparison in Fig. 6, the bias should be small. Dif-

ferences between Burley’s model and our approximation are small

in the ear (0.29 dB) and front (0.26 dB) scenarios. However, those

differences are relatively large in the skin patch scenario (2.09 dB).

Further inspection of the adaptive sampling count in Fig. 1(e), shows

that only 8 samples are used per pixel to meet the target quality. Al-

though there is a small quality degradation, our sampling algorithm

is a good mechanism to prevent oversampling when the quality

is already met for real-time rendering. Despite the minor quality

drop, we have a significant performance gain ranging from 2.3× to

4.3×.
Table 1: Adaptive vs fixed phase breakdown for Digital Mike

in Fig. 1 (ms).

Scenario Setup Pre-filtering Sampling Update Combine Total

(L)+fixed 0.38 0.16 10.73 N/A 0.20 11.47

(L)+adt. 0.38 0.16 1.50 0.54 0.20 2.78

(C)+fixed 0.41 0.17 9.72 N/A 0.27 10.22

(C)+adt. 0.41 0.17 2.72 0.46 0.27 4.03

(R)+fixed 0.35 0.17 1.45 N/A 0.11 2.08

(R)+adt. 0.35 0.17 0.38 0.14 0.11 1.15

6.5 Performance breakdown

To help understand the cost of the variance guiding phase, the

update pass in Fig.8 is separated from the sample estimation and

sampling process for time measurement. We also compared fixed

and adaptive 64 spp cost to illustrate how techniques utilizing

our method might perform on different hardware. The result is

presented in Table 1. The performance is measured as the median

time (in ms) for the left (L) close patch, center (C) ear, and right (R)

front image in Fig.1.

6.6 Discussion and Limitations

Our variance-guided algorithm produces the greatest speedups

when sampling is most incoherent, since the bandwidth reduction

matters most in those cases. Thus the speedup is best for distant

sampling (close views or large mean free path), or sparse sampling.

We also might overestimate the pixel variance, leading to more

samples than needed. Because we haven’t distinguished the vari-

ance due to TAA jittering from variance due to insufficient sampling.

For subsurface, this might be good as everything will be diffused.

Our final quality is bounded by the local target quality. Once

met, no more samples will be added. Nevertheless, our algorithm is

an approximation. It might have created biased sample counts per

frame even though the bias is negligible in terms of the rendering

result. When κ = 1, the sampling contribution cannot always be
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correctly reflected in the final rendering. Because the weight of the

final TAA limits the contribution of each frame.

In the paper, we choose a minimum number of 8 spp. This is

because, if bmin is set to 1 spp, the estimated sample count series

might oscillate or flicker due to noise from the low sample count and

TAA history rejection. bmin = 4 spp was observed to also reduce

these flickering effects, and could be a good choice for particularly

time-critical use. However, we chose bmin = 8 spp to as sufficient

to remove all TAA flickering artifacts, while still benefiting from

adaptive sampling.

7 CONCLUSION

We present a single pass adaptive algorithm SPVG that guides the

MC sampling of subsurface scattering to enable real-time perfor-

mance even with incoherent resource access in uv space. We also

present an importance sampling approximation for subsurface scat-

tering that is suitable for online sample generation. We believe

our algorithm could also have the potential to be used for offline

rendering to guide sample distribution.
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A APPENDIX

A.1 Separable approximation to the Burley
model

To make sure that the separable filter implementation is valid and

can be compared to our method, we provide our fitting from Gauss-

ian kernel parameterization [Jimenez et al. 2015] to Burley based

on non-linear least squares fitting, and also a comparison between

these different techniques. Having a separable fit to the Burley

model eases rendering upgrades where the separable model is al-

ready deployed, but also provides insight into how existing Gauss-

ian kernel parameters interact with Burley’s.

Note that this fitting is to make the separable and Burley mod-

els appear as similar as possible visually. This process itself is not

physically meaningful. The original separable kernel is an approxi-

mation of the dipole model, which is already an approximation of

the actual profile. We are trying to fit it to Burley’s profile, which

is a direct approximation of the actual profile.

A.1.1 Fitting. The fitting problem is to find the best parameter

fitting between the Burley RB (r , θB ) and separable RS (r , θS ) diffuse

profile, where θB = {A, ℓ}, and θS = {falloff}. To achieve this, we

explore three error functions:

(1) Difference. The direct difference between the Burley and

separable curves. The minimization error function is

S∆ =
∑

(RB (r , θB ) − RS (r , θS ))
2 (25)

(2) Ratio. The ratio between the Burley and separable curves

should be close to 1. The minimization error function is

SR =
∑

(RB (r , θB )/RS (r , θS ) − 1)2 (26)

(3) Derivative. The first derivative of both curves in terms of

r should have highest similarity. The minimization error

function is

SD =
∑

(R′
B (r , θB ) − R′

S (r , θS ))
2 (27)

We observed that S∆ is the best error function for non-linear

least squares fitting. Fig. 14 shows an example of the result with

falloff = 0.8 for different error functions. Fig. 15 shows the corre-

sponding mapping between θB and θS . This figure clearly shows

the range of values that can be expressed by the default separable

parameterization and Burley’s. To have the fitting on the fly in an

engine, a LUT or a linear fitting function can be deployed.

A.1.2 Validation. We created a beam light scene where a 1 cm

radius circle surface receives 10 flux within. The subsurface profile

configuration is based on the fitting shown in Fig. 16. Subsurface

color for the separable model [Jimenez et al. 2015] is set to 1. Non-

subsurface processes like tone mapping, bloom, eye adaptation,

specular, and auto exposure are turned off. The result is shown in

Fig. 17. We compared the separable and Burley model in different

configurations and with different diffuse mean free paths (ℓ). Due

to the low sampling count, the separable and Burley models have

different artifacts when ℓ increases. The separable model has band-

ing artifacts while Burley has energy loss due to TAA clamping.

We believe better clamping in TAA could further reduce the energy

loss.
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(a) Red channel. (b) Green channel. (c) Blue channel.

Figure 16: Diffuse profile fitting for the default Separable configuration in UE4.

1cm 2cm 5cm 10cm 20cm

b) Separable
[Jimenez et al., 2015]

c) Burley + 
Separable filter

d) Fixed, 1024spp
[Golubev, 2018]

g) Adt. 64spp
Ours

f) Adt. 64spp 
[Golubev, 2018]

a) No Subsurface

dmfp

e) Adt. 64spp
(No clamping)
[Golubev, 2018]

Figure 17: Subsurface test for the beam light scene with a 1 cm circle receiving 10 flux. a) No subsurface. b) Separable [Jimenez

et al. 2015]. c) Burley profile fit with a separable filter. d) Burley with fixed 1024 spp. e) Burley with adaptive 64spp + no history

clamping. f) Burley with adaptive 64spp. g) Burley with adaptive 64spp using our approximation. Halley’s method introduced

in [Golubev 2018] is used in d)-f) for sampling. TAA is on for all tests.
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